Assessing Students’ Use of Evidence and Organization in Response-to-Text Writing: Using Natural Language Processing for Rubric-Based Automated Scoring

This paper presents an investigation of score prediction based on natural language processing for two targeted constructs within analytic text-based writing: 1) students’ effective use of evidence and, 2) their organization of ideas and evidence in support of their claim. With the long-term goal of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of artificial intelligence in education 2017-12, Vol.27 (4), p.694-728
Hauptverfasser: Rahimi, Zahra, Litman, Diane, Correnti, Richard, Wang, Elaine, Matsumura, Lindsay Clare
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an investigation of score prediction based on natural language processing for two targeted constructs within analytic text-based writing: 1) students’ effective use of evidence and, 2) their organization of ideas and evidence in support of their claim. With the long-term goal of producing feedback for students and teachers, we designed a task-dependent model, for each dimension, that aligns with the scoring rubric and makes use of the source material. We believe the model will be meaningful and easy to interpret given the writing task. We used two datasets of essays written by students in grades 5–6 and 6–8. Our experimental results show that our task-dependent model (consistent with the rubric) performs as well as if not outperforms competitive baselines. We also show the potential generalizability of the rubric-based model by performing cross-corpus experiments. Finally, we show that the predictive utility of different feature groups in our rubric-based modeling approach is related to how much each feature group covers a rubric’s criteria.
ISSN:1560-4292
1560-4306
DOI:10.1007/s40593-017-0143-2