Formation of G-phase in 20Cr32Ni1Nb Stainless Steel and its Effect on Mechanical Properties
A series of tensile tests, Charpy impact tests, optical microscopy observations, and field emission-scanning electron microscopy examinations, were carded out to investigate the mechanical properties and microstructural evolution of 20Cr32NilNb steel. Experimental results indicate that the as-cast m...
Gespeichert in:
Veröffentlicht in: | Acta metallurgica sinica : English letters 2017-09, Vol.30 (9), p.829-839 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of tensile tests, Charpy impact tests, optical microscopy observations, and field emission-scanning electron microscopy examinations, were carded out to investigate the mechanical properties and microstructural evolution of 20Cr32NilNb steel. Experimental results indicate that the as-cast microstructure of the steel typically consists of a supersaturated solid solution of austenite matrix with a network of interdendritic primary carbides (NbC and M23C6). In the ex-service samples, large amounts of secondary carbides precipitate within austenite matrix. Besides the growth and coarsening of NbC and M23C6 carbides during service condition, the Ni-Nb silicides known as G-phase (Nil6Nb6Si7) are formed at the interdendritic boundaries. The microstructural evolution results in the degradation of the mechanical properties of the ex-service steel. In addition, the precipitate rate of G-phase, depending in part on Si content, varies greatly for the 20Cr32NilNb steel, which plays a key role in the long-term microstructural stability of the steel. Based on the X-ray diffraction data, time-temperature-transformation curve for the steel is obtained from the aged specimens. |
---|---|
ISSN: | 1006-7191 2194-1289 |
DOI: | 10.1007/s40195-017-0589-0 |