Personalized Adaptive Learner Model in E-Learning System Using FCM and Fuzzy Inference System
Each learner has unique learning style in which one learns easily. It is aimed to individualize the learning experiences for each learner in e-learning. Therefore, it is important to diagnose complete learners’ learning style and behaviour to provide suitable learning paths and automated personalize...
Gespeichert in:
Veröffentlicht in: | International journal of fuzzy systems 2017-08, Vol.19 (4), p.1249-1260 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Each learner has unique learning style in which one learns easily. It is aimed to individualize the learning experiences for each learner in e-learning. Therefore, it is important to diagnose complete learners’ learning style and behaviour to provide suitable learning paths and automated personalized contents as per their choices. This paper proposes some new dimensions of adaptivity like automatic and dynamic detection of learning styles and provides personalization accordingly. It has advantages in terms of precision and time spent. It is a literature-based approach in which a personalized adaptive learner model (PALM) was constructed. This proposed learner model mines learner’s navigational accesses data and finds learner’s behavioural patterns which individualize each learner and provide personalization according to their learning styles in the learning process. Fuzzy cognitive maps and fuzzy inference system a soft computing techniques were introduced to implement PALM. Result shows that personalized adaptive e-learning system is better and promising than the non-adaptive in terms of benefits to the learners and improvement in overall learning process. Thus, providing adaptivity as per learner’s needs is an important factor for enhancing the efficiency and effectiveness of the entire learning process. |
---|---|
ISSN: | 1562-2479 2199-3211 |
DOI: | 10.1007/s40815-017-0309-y |