Magnetoconductance from spin-charge inter-conversion in two-terminal molecular nanojunctions with strong spin-orbit coupling electrodes
Spin-charge inter-conversion mediated by spin-orbit coupling can lead to finite magnetoconductance in two-terminal molecular nanojunctions under non-equilibrium conditions. Here, we demonstrate how such a finite magnetoconductance can emerge in model two-terminal molecular nanojunctions by means of...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-02, Vol.2701 (1), p.12095 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spin-charge inter-conversion mediated by spin-orbit coupling can lead to finite magnetoconductance in two-terminal molecular nanojunctions under non-equilibrium conditions. Here, we demonstrate how such a finite magnetoconductance can emerge in model two-terminal molecular nanojunctions by means of density functional theory based transport calculations with spin-orbit coupling in a first-order perturbation approximation. The junctions are built from the two chiral partners of an idealized helical molecule and tungsten or gold electrodes with two layers of magnetic nickel at the interface of the drain electrodes. Using Au source electrodes and a low applied bias of 0.1 V, we find percentage relative magnetoconductance values in excess of the lower bound reported in recent low-temperature, low-bias, experiments. The left-handed molecule is seen to exhibit greater magnetoconductance than its right-handed chiral partner for both Au and W source electrodes, thus demonstrating that our calculations can also exhibit enantioselectivity. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2701/1/012095 |