Influence of Stone Columns on Seismic Response of Buildings Considering the Effects of Liquefaction
In this paper, the behaviour of a soil-foundation system supported on a stone column-reinforced liquefiable soil strata is investigated through finite element analysis. The numerical analyses are performed on a five story reinforced concrete moment resisting building supported on a raft foundation....
Gespeichert in:
Veröffentlicht in: | International journal of geotechnical earthquake engineering 2022-01, Vol.13 (1), p.1-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the behaviour of a soil-foundation system supported on a stone column-reinforced liquefiable soil strata is investigated through finite element analysis. The numerical analyses are performed on a five story reinforced concrete moment resisting building supported on a raft foundation. The influence of stone column slenderness ratio on liquefaction mitigation is studied by varying the length of stone columns at a constant area replacement ratio. The results are obtained based on the excess pore pressure, free-field soil settlement, foundation settlement, acceleration response, superstructure's inter-story drift, and lateral story displacement for each ground motion. The results showed that the liquefaction of free-field soil had a major impact on the foundation settlement and building lateral deformation. With the inclusion of stone columns, excess pore pressure ratio in the free-field region reduced considerably, which had immediate effects on the building's lateral deformation. |
---|---|
ISSN: | 1947-8488 1947-8496 |
DOI: | 10.4018/ijgee.314222 |