Persistence B-spline grids: stable vector representation of persistence diagrams based on data fitting

Many attempts have been made in recent decades to integrate machine learning (ML) and topological data analysis. A prominent problem in applying persistent homology to ML tasks is finding a vector representation of a persistence diagram (PD), which is a summary diagram for representing topological f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2024-03, Vol.113 (3), p.1373-1420
Hauptverfasser: Dong, Zhetong, Lin, Hongwei, Zhou, Chi, Zhang, Ben, Li, Gengchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1420
container_issue 3
container_start_page 1373
container_title Machine learning
container_volume 113
creator Dong, Zhetong
Lin, Hongwei
Zhou, Chi
Zhang, Ben
Li, Gengchen
description Many attempts have been made in recent decades to integrate machine learning (ML) and topological data analysis. A prominent problem in applying persistent homology to ML tasks is finding a vector representation of a persistence diagram (PD), which is a summary diagram for representing topological features. From the perspective of data fitting, a stable vector representation, namely, persistence B-spline grid (PBSG), is developed based on the efficient technique of progressive-iterative approximation for least-squares B-spline function fitting. We theoretically prove that the PBSG method is stable with respect to the metric of 1-Wasserstein distance defined on the PD space. The developed method was tested on a synthetic data set, data sets of randomly generated PDs, data of a dynamical system, and 3D CAD models, showing its effectiveness and efficiency.
doi_str_mv 10.1007/s10994-023-06492-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931885127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931885127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4306fbd6b4e1c37550bd0e60e627462bbfad601e8bc430492c9f9ed7adb03b0c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VJ2qatN138AkEPeg75mJQsu21Nsi7-e6Mr6EkYGAaed4Z5CDllcM4AmovIoOuqAnhZgKg6Xmz3yIzVTR5rUe-TGbRtXQjG60NyFOMSALhoxYy4ZwzRx4SDQXpdxGnlB6R98DZe0piUXiF9R5PGQANOASMOSSU_DnR0dPqTtV71Qa0j1SqipRmwKinqfEp-6I_JgVOriCc_fU5eb29eFvfF49Pdw-LqsTC8gVRUJQinrdAVMlM2dQ3aAopcvKkE19opK4Bhq01G85-mcx3aRlkNpQZTzsnZbu8UxrcNxiSX4yYM-aTkXcmyBMabTPEdZcIYY0Anp-DXKnxIBvLLp9z5lNmn_PYptzlU7kIxw0OP4Xf1P6lPWcZ64w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931885127</pqid></control><display><type>article</type><title>Persistence B-spline grids: stable vector representation of persistence diagrams based on data fitting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Zhetong ; Lin, Hongwei ; Zhou, Chi ; Zhang, Ben ; Li, Gengchen</creator><creatorcontrib>Dong, Zhetong ; Lin, Hongwei ; Zhou, Chi ; Zhang, Ben ; Li, Gengchen</creatorcontrib><description>Many attempts have been made in recent decades to integrate machine learning (ML) and topological data analysis. A prominent problem in applying persistent homology to ML tasks is finding a vector representation of a persistence diagram (PD), which is a summary diagram for representing topological features. From the perspective of data fitting, a stable vector representation, namely, persistence B-spline grid (PBSG), is developed based on the efficient technique of progressive-iterative approximation for least-squares B-spline function fitting. We theoretically prove that the PBSG method is stable with respect to the metric of 1-Wasserstein distance defined on the PD space. The developed method was tested on a synthetic data set, data sets of randomly generated PDs, data of a dynamical system, and 3D CAD models, showing its effectiveness and efficiency.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-023-06492-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial Intelligence ; B spline functions ; Bar codes ; Computer Science ; Control ; Data analysis ; Datasets ; Homology ; Iterative methods ; Machine Learning ; Mechatronics ; Methods ; Natural Language Processing (NLP) ; Representations ; Robotics ; Simulation and Modeling ; Synthetic data ; Three dimensional models ; Topology</subject><ispartof>Machine learning, 2024-03, Vol.113 (3), p.1373-1420</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4306fbd6b4e1c37550bd0e60e627462bbfad601e8bc430492c9f9ed7adb03b0c3</cites><orcidid>0000-0002-9337-9624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-023-06492-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-023-06492-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Dong, Zhetong</creatorcontrib><creatorcontrib>Lin, Hongwei</creatorcontrib><creatorcontrib>Zhou, Chi</creatorcontrib><creatorcontrib>Zhang, Ben</creatorcontrib><creatorcontrib>Li, Gengchen</creatorcontrib><title>Persistence B-spline grids: stable vector representation of persistence diagrams based on data fitting</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Many attempts have been made in recent decades to integrate machine learning (ML) and topological data analysis. A prominent problem in applying persistent homology to ML tasks is finding a vector representation of a persistence diagram (PD), which is a summary diagram for representing topological features. From the perspective of data fitting, a stable vector representation, namely, persistence B-spline grid (PBSG), is developed based on the efficient technique of progressive-iterative approximation for least-squares B-spline function fitting. We theoretically prove that the PBSG method is stable with respect to the metric of 1-Wasserstein distance defined on the PD space. The developed method was tested on a synthetic data set, data sets of randomly generated PDs, data of a dynamical system, and 3D CAD models, showing its effectiveness and efficiency.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>B spline functions</subject><subject>Bar codes</subject><subject>Computer Science</subject><subject>Control</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Homology</subject><subject>Iterative methods</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Natural Language Processing (NLP)</subject><subject>Representations</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Synthetic data</subject><subject>Three dimensional models</subject><subject>Topology</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VJ2qatN138AkEPeg75mJQsu21Nsi7-e6Mr6EkYGAaed4Z5CDllcM4AmovIoOuqAnhZgKg6Xmz3yIzVTR5rUe-TGbRtXQjG60NyFOMSALhoxYy4ZwzRx4SDQXpdxGnlB6R98DZe0piUXiF9R5PGQANOASMOSSU_DnR0dPqTtV71Qa0j1SqipRmwKinqfEp-6I_JgVOriCc_fU5eb29eFvfF49Pdw-LqsTC8gVRUJQinrdAVMlM2dQ3aAopcvKkE19opK4Bhq01G85-mcx3aRlkNpQZTzsnZbu8UxrcNxiSX4yYM-aTkXcmyBMabTPEdZcIYY0Anp-DXKnxIBvLLp9z5lNmn_PYptzlU7kIxw0OP4Xf1P6lPWcZ64w</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Dong, Zhetong</creator><creator>Lin, Hongwei</creator><creator>Zhou, Chi</creator><creator>Zhang, Ben</creator><creator>Li, Gengchen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9337-9624</orcidid></search><sort><creationdate>20240301</creationdate><title>Persistence B-spline grids: stable vector representation of persistence diagrams based on data fitting</title><author>Dong, Zhetong ; Lin, Hongwei ; Zhou, Chi ; Zhang, Ben ; Li, Gengchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4306fbd6b4e1c37550bd0e60e627462bbfad601e8bc430492c9f9ed7adb03b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>B spline functions</topic><topic>Bar codes</topic><topic>Computer Science</topic><topic>Control</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Homology</topic><topic>Iterative methods</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Natural Language Processing (NLP)</topic><topic>Representations</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Synthetic data</topic><topic>Three dimensional models</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Zhetong</creatorcontrib><creatorcontrib>Lin, Hongwei</creatorcontrib><creatorcontrib>Zhou, Chi</creatorcontrib><creatorcontrib>Zhang, Ben</creatorcontrib><creatorcontrib>Li, Gengchen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Zhetong</au><au>Lin, Hongwei</au><au>Zhou, Chi</au><au>Zhang, Ben</au><au>Li, Gengchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistence B-spline grids: stable vector representation of persistence diagrams based on data fitting</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>113</volume><issue>3</issue><spage>1373</spage><epage>1420</epage><pages>1373-1420</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Many attempts have been made in recent decades to integrate machine learning (ML) and topological data analysis. A prominent problem in applying persistent homology to ML tasks is finding a vector representation of a persistence diagram (PD), which is a summary diagram for representing topological features. From the perspective of data fitting, a stable vector representation, namely, persistence B-spline grid (PBSG), is developed based on the efficient technique of progressive-iterative approximation for least-squares B-spline function fitting. We theoretically prove that the PBSG method is stable with respect to the metric of 1-Wasserstein distance defined on the PD space. The developed method was tested on a synthetic data set, data sets of randomly generated PDs, data of a dynamical system, and 3D CAD models, showing its effectiveness and efficiency.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-023-06492-w</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0002-9337-9624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2024-03, Vol.113 (3), p.1373-1420
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_2931885127
source SpringerLink Journals - AutoHoldings
subjects Approximation
Artificial Intelligence
B spline functions
Bar codes
Computer Science
Control
Data analysis
Datasets
Homology
Iterative methods
Machine Learning
Mechatronics
Methods
Natural Language Processing (NLP)
Representations
Robotics
Simulation and Modeling
Synthetic data
Three dimensional models
Topology
title Persistence B-spline grids: stable vector representation of persistence diagrams based on data fitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistence%20B-spline%20grids:%20stable%20vector%20representation%20of%20persistence%20diagrams%20based%20on%20data%20fitting&rft.jtitle=Machine%20learning&rft.au=Dong,%20Zhetong&rft.date=2024-03-01&rft.volume=113&rft.issue=3&rft.spage=1373&rft.epage=1420&rft.pages=1373-1420&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-023-06492-w&rft_dat=%3Cproquest_cross%3E2931885127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931885127&rft_id=info:pmid/&rfr_iscdi=true