Persistence B-spline grids: stable vector representation of persistence diagrams based on data fitting
Many attempts have been made in recent decades to integrate machine learning (ML) and topological data analysis. A prominent problem in applying persistent homology to ML tasks is finding a vector representation of a persistence diagram (PD), which is a summary diagram for representing topological f...
Gespeichert in:
Veröffentlicht in: | Machine learning 2024-03, Vol.113 (3), p.1373-1420 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many attempts have been made in recent decades to integrate machine learning (ML) and topological data analysis. A prominent problem in applying persistent homology to ML tasks is finding a vector representation of a persistence diagram (PD), which is a summary diagram for representing topological features. From the perspective of data fitting, a stable vector representation, namely,
persistence B-spline grid
(PBSG), is developed based on the efficient technique of progressive-iterative approximation for least-squares B-spline function fitting. We theoretically prove that the PBSG method is stable with respect to the metric of 1-Wasserstein distance defined on the PD space. The developed method was tested on a synthetic data set, data sets of randomly generated PDs, data of a dynamical system, and 3D CAD models, showing its effectiveness and efficiency. |
---|---|
ISSN: | 0885-6125 1573-0565 |
DOI: | 10.1007/s10994-023-06492-w |