Some results involving the \(A_\alpha\)-eigenvalues for graphs and line graphs

Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Joao Domingos Gomes da Silva Junior, Carla Silva Oliveira, Liliana Manuela Gaspar C da Costa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Joao Domingos Gomes da Silva Junior
Carla Silva Oliveira
Liliana Manuela Gaspar C da Costa
description Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(D(G)\), the following way, \(A_\alpha(G):=\alpha A(G)+(1-\alpha)D(G),\) where \(\alpha\in[0,1]\). In this paper, we present some bounds for the eigenvalues of \(A_\alpha(G)\) and for the largest and smallest eigenvalues of \(A_\alpha(l(G))\). Extremal graphs attaining some of these bounds are characterized.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2931849305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931849305</sourcerecordid><originalsourceid>FETCH-proquest_journals_29318493053</originalsourceid><addsrcrecordid>eNqNi8EKgkAURYcgSMp_eNCmFsI4o6XLiKJVm1oKMuBTR6YZm6d-fy78gFaXwzl3xQIhZRxliRAbFhJ1nHNxOos0lQF7vtwHwSONZiDQdnJm0raBoUUoDpeyUKZvVXGMUDdoJ2VGJKidh8arviVQtgKjLS68Y-taGcJw2S3b32_v6yPqvfvO16Hs3OjtrEqRyzhLcslT-V_1A8M0Pgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931849305</pqid></control><display><type>article</type><title>Some results involving the \(A_\alpha\)-eigenvalues for graphs and line graphs</title><source>Free E- Journals</source><creator>Joao Domingos Gomes da Silva Junior ; Carla Silva Oliveira ; Liliana Manuela Gaspar C da Costa</creator><creatorcontrib>Joao Domingos Gomes da Silva Junior ; Carla Silva Oliveira ; Liliana Manuela Gaspar C da Costa</creatorcontrib><description>Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(D(G)\), the following way, \(A_\alpha(G):=\alpha A(G)+(1-\alpha)D(G),\) where \(\alpha\in[0,1]\). In this paper, we present some bounds for the eigenvalues of \(A_\alpha(G)\) and for the largest and smallest eigenvalues of \(A_\alpha(l(G))\). Extremal graphs attaining some of these bounds are characterized.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Graphs ; Mathematical analysis</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Joao Domingos Gomes da Silva Junior</creatorcontrib><creatorcontrib>Carla Silva Oliveira</creatorcontrib><creatorcontrib>Liliana Manuela Gaspar C da Costa</creatorcontrib><title>Some results involving the \(A_\alpha\)-eigenvalues for graphs and line graphs</title><title>arXiv.org</title><description>Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(D(G)\), the following way, \(A_\alpha(G):=\alpha A(G)+(1-\alpha)D(G),\) where \(\alpha\in[0,1]\). In this paper, we present some bounds for the eigenvalues of \(A_\alpha(G)\) and for the largest and smallest eigenvalues of \(A_\alpha(l(G))\). Extremal graphs attaining some of these bounds are characterized.</description><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8EKgkAURYcgSMp_eNCmFsI4o6XLiKJVm1oKMuBTR6YZm6d-fy78gFaXwzl3xQIhZRxliRAbFhJ1nHNxOos0lQF7vtwHwSONZiDQdnJm0raBoUUoDpeyUKZvVXGMUDdoJ2VGJKidh8arviVQtgKjLS68Y-taGcJw2S3b32_v6yPqvfvO16Hs3OjtrEqRyzhLcslT-V_1A8M0Pgo</recordid><startdate>20240223</startdate><enddate>20240223</enddate><creator>Joao Domingos Gomes da Silva Junior</creator><creator>Carla Silva Oliveira</creator><creator>Liliana Manuela Gaspar C da Costa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240223</creationdate><title>Some results involving the \(A_\alpha\)-eigenvalues for graphs and line graphs</title><author>Joao Domingos Gomes da Silva Junior ; Carla Silva Oliveira ; Liliana Manuela Gaspar C da Costa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29318493053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Joao Domingos Gomes da Silva Junior</creatorcontrib><creatorcontrib>Carla Silva Oliveira</creatorcontrib><creatorcontrib>Liliana Manuela Gaspar C da Costa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joao Domingos Gomes da Silva Junior</au><au>Carla Silva Oliveira</au><au>Liliana Manuela Gaspar C da Costa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Some results involving the \(A_\alpha\)-eigenvalues for graphs and line graphs</atitle><jtitle>arXiv.org</jtitle><date>2024-02-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(D(G)\), the following way, \(A_\alpha(G):=\alpha A(G)+(1-\alpha)D(G),\) where \(\alpha\in[0,1]\). In this paper, we present some bounds for the eigenvalues of \(A_\alpha(G)\) and for the largest and smallest eigenvalues of \(A_\alpha(l(G))\). Extremal graphs attaining some of these bounds are characterized.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2931849305
source Free E- Journals
subjects Eigenvalues
Graphs
Mathematical analysis
title Some results involving the \(A_\alpha\)-eigenvalues for graphs and line graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Some%20results%20involving%20the%20%5C(A_%5Calpha%5C)-eigenvalues%20for%20graphs%20and%20line%20graphs&rft.jtitle=arXiv.org&rft.au=Joao%20Domingos%20Gomes%20da%20Silva%20Junior&rft.date=2024-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2931849305%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931849305&rft_id=info:pmid/&rfr_iscdi=true