Some results involving the \(A_\alpha\)-eigenvalues for graphs and line graphs

Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Joao Domingos Gomes da Silva Junior, Carla Silva Oliveira, Liliana Manuela Gaspar C da Costa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(D(G)\), the following way, \(A_\alpha(G):=\alpha A(G)+(1-\alpha)D(G),\) where \(\alpha\in[0,1]\). In this paper, we present some bounds for the eigenvalues of \(A_\alpha(G)\) and for the largest and smallest eigenvalues of \(A_\alpha(l(G))\). Extremal graphs attaining some of these bounds are characterized.
ISSN:2331-8422