Some results involving the \(A_\alpha\)-eigenvalues for graphs and line graphs
Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(G\) be a simple graph with adjacency matrix \(A(G)\), signless Laplacian matrix \(Q(G)\), degree diagonal matrix \(D(G)\) and let \(l(G)\) be the line graph of \(G\). In 2017, Nikiforov defined the \(A_\alpha\)-matrix of \(G\), \(A_\alpha(G)\), as a linear convex combination of \(A(G)\) and \(D(G)\), the following way, \(A_\alpha(G):=\alpha A(G)+(1-\alpha)D(G),\) where \(\alpha\in[0,1]\). In this paper, we present some bounds for the eigenvalues of \(A_\alpha(G)\) and for the largest and smallest eigenvalues of \(A_\alpha(l(G))\). Extremal graphs attaining some of these bounds are characterized. |
---|---|
ISSN: | 2331-8422 |