The connective -theory of the Eilenberg–MacLane space

We compute $ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ and $ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ , the connective $KU$ -cohomology and connective $KU$ -homology groups of the mod- $p$ Eilenberg–MacLane space $K\!\left({\mathbb{Z}}_p,2\right)$ , using the Adams spectral sequence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2024-01, Vol.66 (1), p.1-33
Hauptverfasser: Davis, Donald M., Wilson, W. Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute $ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ and $ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ , the connective $KU$ -cohomology and connective $KU$ -homology groups of the mod- $p$ Eilenberg–MacLane space $K\!\left({\mathbb{Z}}_p,2\right)$ , using the Adams spectral sequence. We obtain a striking interaction between $h_0$ -extensions and exotic extensions. The mod- $p$ connective $KU$ -cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089523000423