The connective -theory of the Eilenberg–MacLane space
We compute $ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ and $ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ , the connective $KU$ -cohomology and connective $KU$ -homology groups of the mod- $p$ Eilenberg–MacLane space $K\!\left({\mathbb{Z}}_p,2\right)$ , using the Adams spectral sequence...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2024-01, Vol.66 (1), p.1-33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute
$ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$
and
$ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$
, the connective
$KU$
-cohomology and connective
$KU$
-homology groups of the mod-
$p$
Eilenberg–MacLane space
$K\!\left({\mathbb{Z}}_p,2\right)$
, using the Adams spectral sequence. We obtain a striking interaction between
$h_0$
-extensions and exotic extensions. The mod-
$p$
connective
$KU$
-cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089523000423 |