Thermal properties and water content of two tropical wood species as a function of the air relative humidity

This work aims to use experimental data from thermal characterization and adsorption/desorption isotherms of two tropicals woods species (Ayous and Tali) to propose an empirical model of thermal conductivity as a function of air relative humidity. A static gravimetric method was used to determine th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2024-03, Vol.60 (3), p.449-461
Hauptverfasser: Bobda, Francklin, Mvondo, Rachel Raïssa Ngono, Diakhate, Malick, Meukam, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work aims to use experimental data from thermal characterization and adsorption/desorption isotherms of two tropicals woods species (Ayous and Tali) to propose an empirical model of thermal conductivity as a function of air relative humidity. A static gravimetric method was used to determine the adsorption isotherms of Tali and Ayous at 30 °C, and 40 °C. The GAB, Henderson and Nelson models were used to predict the isotherms. Exponential models of thermal conductivity and volumetric heat capacity with air relative humidity were proposed. The influence of hysteresis phenomenum was studied on these properties. The reliability of the developed empirical correlation between thermal properties and air relative humidity was evaluated by comparing the experimental and predicted curves. The relative errors were less than 8% for both Ayous and Tali. The correlation coefficients obtained were greater than 99% for both species in adsorption and desorption. There was also an increase in the equilibrium water content of both species with the increase in water activity at constant temperature. The correlation coefficients between GAB model and sorption experimental data were lower than 99% when Ayous was subjected to a temperature of 40 °C in adsorption and Tali to a temperature of 40 °C in desorption.
ISSN:0947-7411
1432-1181
DOI:10.1007/s00231-023-03442-z