Simulation of a physical reservoir made of a Ag2S islands network

Recently, a physical reservoir operation utilizing atomic switch technologies was demonstrated. Atomic switch operates by controlling the formation and annihilation of a metal filament between two electrodes using solid-state electrochemical reactions. In this study, we simulated the operation of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2024-03, Vol.63 (3), p.03SP53
Hauptverfasser: Murase, Yusuke, Hasegawa, Tsuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, a physical reservoir operation utilizing atomic switch technologies was demonstrated. Atomic switch operates by controlling the formation and annihilation of a metal filament between two electrodes using solid-state electrochemical reactions. In this study, we simulated the operation of an atomic switch-based reservoir by arranging modeled atomic switches in a network. The aim of this study is to confirm that nonlinear transformation and short-term memory in a reservoir operation observed in the experiment can be realized by the integration of atomic switches showing nonvolatile bipolar operation. We incorporated these characteristics by making a simple operating model of a single atomic switch, which successfully reproduced major characteristics of the experimental results of a reservoir operation.
ISSN:0021-4922
1347-4065
DOI:10.35848/1347-4065/ad2652