Chiral covers of regular maps of given type
With the help of the theory of holomorphic and anti-holomorphic differentials, G. A. Jones [Chiral covers of hypermaps, Ars Math. Contemp. 8 (2015), 425-431] proved that every regular hypermap of a non-spherical type is covered by an infinite number of orientably-regular but chiral hypermaps of the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the help of the theory of holomorphic and anti-holomorphic differentials, G. A. Jones [Chiral covers of hypermaps, Ars Math. Contemp. 8 (2015), 425-431] proved that every regular hypermap of a non-spherical type is covered by an infinite number of orientably-regular but chiral hypermaps of the same type. We present a different proof of the same result for regular maps, based on parallel products of maps and existence of chiral maps of a given hyperbolic type with a symmetric or an alternating automorphism group. |
---|---|
ISSN: | 2331-8422 |