Chiral covers of regular maps of given type

With the help of the theory of holomorphic and anti-holomorphic differentials, G. A. Jones [Chiral covers of hypermaps, Ars Math. Contemp. 8 (2015), 425-431] proved that every regular hypermap of a non-spherical type is covered by an infinite number of orientably-regular but chiral hypermaps of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Reade, Olivia, Širáň, Jozef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the help of the theory of holomorphic and anti-holomorphic differentials, G. A. Jones [Chiral covers of hypermaps, Ars Math. Contemp. 8 (2015), 425-431] proved that every regular hypermap of a non-spherical type is covered by an infinite number of orientably-regular but chiral hypermaps of the same type. We present a different proof of the same result for regular maps, based on parallel products of maps and existence of chiral maps of a given hyperbolic type with a symmetric or an alternating automorphism group.
ISSN:2331-8422