Varieties of Exponential R-Groups

The notion of an exponential R -group, where R is an arbitrary associative ring with unity, was introduced by R. Lyndon. Myasnikov and Remeslennikov refined the notion of an R -group by introducing an additional axiom. In particular, the new concept of an exponential MR -group ( R -ring) is a direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2023-05, Vol.62 (2), p.119-136
Hauptverfasser: Amaglobeli, M. G., Myasnikov, A. G., Nadiradze, T. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The notion of an exponential R -group, where R is an arbitrary associative ring with unity, was introduced by R. Lyndon. Myasnikov and Remeslennikov refined the notion of an R -group by introducing an additional axiom. In particular, the new concept of an exponential MR -group ( R -ring) is a direct generalization of the concept of an R -module to the case of noncommutative groups. We come up with the notions of a variety of MR -groups and of tensor completions of groups in varieties. Abelian varieties of MR -groups are described, and various definitions of nilpotency in this category are compared. It turns out that the completion of a 2-step nilpotent MR -group is 2-step nilpotent.
ISSN:0002-5232
1573-8302
DOI:10.1007/s10469-024-09731-8