Interpolation by the Exact Inversion of the Gram Matrix

Using a lemma of Davis on Gram matrices applied to the classical Orthogonal Polynomials to generate reproducing kernel interpolation over the classical domains for polynomials. These kernels have terms which are exact over the rational ring. The Condition Numbers are readily shown to get very large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
1. Verfasser: Spitzer, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a lemma of Davis on Gram matrices applied to the classical Orthogonal Polynomials to generate reproducing kernel interpolation over the classical domains for polynomials. These kernels have terms which are exact over the rational ring. The Condition Numbers are readily shown to get very large with the size of the Gram matrices as expected. The calculation of the error variances for trigonometric functions and the exponential show a significant improvement over the equivalent Taylor expansion variances.
ISSN:2331-8422