In value-based deep reinforcement learning, a pruned network is a good network

Recent work has shown that deep reinforcement learning agents have difficulty in effectively using their network parameters. We leverage prior insights into the advantages of sparse training techniques and demonstrate that gradual magnitude pruning enables value-based agents to maximize parameter ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Obando-Ceron, Johan, Courville, Aaron, Castro, Pablo Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent work has shown that deep reinforcement learning agents have difficulty in effectively using their network parameters. We leverage prior insights into the advantages of sparse training techniques and demonstrate that gradual magnitude pruning enables value-based agents to maximize parameter effectiveness. This results in networks that yield dramatic performance improvements over traditional networks, using only a small fraction of the full network parameters.
ISSN:2331-8422