Thermal Stress Analysis of the LNG Corrugated Cryogenic Hose During Gas Pre-Cooling Process
In this study, thermal-fluid-solid coupled simulations on the gas-phase pre-cooling operation of the corrugated cryogenic hoses were performed. Attention was focused on the temporal evolution and spatial distribution of transient thermal stress in the hose structure caused by convective heat transfe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, thermal-fluid-solid coupled simulations on the gas-phase pre-cooling operation of the corrugated cryogenic hoses were performed. Attention was focused on the temporal evolution and spatial distribution of transient thermal stress in the hose structure caused by convective heat transfer of the cooling medium, Liquefied Natural Gas Boil-Off Gas (BOG). The effects of different corrugated hose parameters, i.e., boundary conditions, hose lengths, BOG inlet flow rates, and corrugation shapes (C-type and U-type), on the transient thermal stress behavior were thoroughly assessed. The thermal stress developed at different locations of the corrugated hoses with these parameters is found to be governed by two major factors: the boundary constraint and local temperature gradient. The objective of this study is to offer practical insights for the structural strength design of corrugated cryogenic hoses and effective pre-cooling strategies, aiming to mitigate structural safety risks caused by excessive thermal stress. |
---|---|
ISSN: | 2331-8422 |