On the consecutive k-free values for certain classes of polynomials

In the present paper we propose an asymptotic formula for R ( H ,  k ),  the number of triples of positive integers x , y , z ≤ H such that x 2 + y 2 + z 2 + 1 , x 2 + y 2 + z 2 + 2 are k -free with k ≥ 2 . Especially, in the case of k = 2 we prove that R ( H , 2 ) = σ 2 H 3 + O ( H 9 / 4 + ε ) , wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2024-03, Vol.88 (1), p.25-37
Hauptverfasser: Fan, Haihong, Zhai, Wenguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper we propose an asymptotic formula for R ( H ,  k ),  the number of triples of positive integers x , y , z ≤ H such that x 2 + y 2 + z 2 + 1 , x 2 + y 2 + z 2 + 2 are k -free with k ≥ 2 . Especially, in the case of k = 2 we prove that R ( H , 2 ) = σ 2 H 3 + O ( H 9 / 4 + ε ) , where σ 2 is an absolute constant and ε is an arbitrary small positive number, which improves the error term O ( H 7 / 3 + ε ) given by Chen (Indian J Pure Appl Math, 2022. https://doi.org/10.1007/s13226-022-00292-z ). The key point of the new result is a refinement of Dimitrov’s method.
ISSN:0031-5303
1588-2829
DOI:10.1007/s10998-023-00534-5