Multi-epoch PPP-RTK corrections: temporal characteristics, pitfalls and user-impact

PPP-RTK corrections, aiding GNSS users to achieve single-receiver integer ambiguity-resolved parameter solutions, are often estimated in a recursive manner by a provider. Such recursive, multi-epoch, estimation of the corrections relies on a set of S -basis parameters that are chosen by the provider...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geodesy 2024-02, Vol.98 (2), Article 15
Hauptverfasser: Psychas, D., Khodabandeh, A., Teunissen, P. J. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PPP-RTK corrections, aiding GNSS users to achieve single-receiver integer ambiguity-resolved parameter solutions, are often estimated in a recursive manner by a provider. Such recursive, multi-epoch, estimation of the corrections relies on a set of S -basis parameters that are chosen by the provider so as to make the underlying measurement setup solvable. As a consequence, the provider can only estimate estimable forms of the corrections rather than the original corrections themselves. It is the goal of the present contribution to address the consequence of the corrections’ dependency on the provider’s S -basis, showcasing the characteristics of their multi-epoch solutions, thereby identifying potential pitfalls which the PPP-RTK user should avoid when evaluating such solutions. To this end, we develop a simulation platform that allows one to have full control over the properties of PPP-RTK corrections and demonstrate various misleading temporal behaviors that exist when interpreting the multi-epoch solutions of their estimable forms. The roles of the correction latency and time correlation in the multi-epoch user positioning performance are quantified, while the deviation of the user-reported positioning precision description from its user-actual counterpart is measured under a misspecified user stochastic model.
ISSN:0949-7714
1432-1394
DOI:10.1007/s00190-024-01823-8