Yoneda lemma and representation theorem for double categories

We study (vertically) normal lax double functors valued in the weak double category \(\mathbb{C}\mathrm{at}\) of small categories, functors, profunctors and natural transformations, which we refer to as lax double presheaves. We show that for the theory of double categories they play a similar role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Fröhlich, Benedikt, Moser, Lyne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fröhlich, Benedikt
Moser, Lyne
description We study (vertically) normal lax double functors valued in the weak double category \(\mathbb{C}\mathrm{at}\) of small categories, functors, profunctors and natural transformations, which we refer to as lax double presheaves. We show that for the theory of double categories they play a similar role as 2-functors valued in \(\mathrm{Cat}\) for 2-categories. We first introduce representable lax double presheaves and establish a Yoneda lemma. Then we build a Grothendieck construction which gives a 2-equivalence between lax double presheaves and discrete double fibrations over a fixed double category. Finally, we prove a representation theorem showing that a lax double presheaf is represented by an object if and only if its Grothendieck construction has a double terminal object.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928439607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928439607</sourcerecordid><originalsourceid>FETCH-proquest_journals_29284396073</originalsourceid><addsrcrecordid>eNqNyj0KwkAQQOFFEAyaOwxYB9bZ_BZWongAG6uwJhNNSHbi7Ob-WngAq1d8b6UiNOaQlCniRsXeD1przAvMMhOp450dtRZGmiYL1rUgNAt5csGGnh2EF7HQBB0LtLw8RoLGBnqy9OR3at3Z0VP861btL-fb6ZrMwu-FfKgHXsR9qcYKy9RUuS7Mf9cHrdA4dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928439607</pqid></control><display><type>article</type><title>Yoneda lemma and representation theorem for double categories</title><source>Free E- Journals</source><creator>Fröhlich, Benedikt ; Moser, Lyne</creator><creatorcontrib>Fröhlich, Benedikt ; Moser, Lyne</creatorcontrib><description>We study (vertically) normal lax double functors valued in the weak double category \(\mathbb{C}\mathrm{at}\) of small categories, functors, profunctors and natural transformations, which we refer to as lax double presheaves. We show that for the theory of double categories they play a similar role as 2-functors valued in \(\mathrm{Cat}\) for 2-categories. We first introduce representable lax double presheaves and establish a Yoneda lemma. Then we build a Grothendieck construction which gives a 2-equivalence between lax double presheaves and discrete double fibrations over a fixed double category. Finally, we prove a representation theorem showing that a lax double presheaf is represented by an object if and only if its Grothendieck construction has a double terminal object.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Representations ; Theorems</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Fröhlich, Benedikt</creatorcontrib><creatorcontrib>Moser, Lyne</creatorcontrib><title>Yoneda lemma and representation theorem for double categories</title><title>arXiv.org</title><description>We study (vertically) normal lax double functors valued in the weak double category \(\mathbb{C}\mathrm{at}\) of small categories, functors, profunctors and natural transformations, which we refer to as lax double presheaves. We show that for the theory of double categories they play a similar role as 2-functors valued in \(\mathrm{Cat}\) for 2-categories. We first introduce representable lax double presheaves and establish a Yoneda lemma. Then we build a Grothendieck construction which gives a 2-equivalence between lax double presheaves and discrete double fibrations over a fixed double category. Finally, we prove a representation theorem showing that a lax double presheaf is represented by an object if and only if its Grothendieck construction has a double terminal object.</description><subject>Categories</subject><subject>Representations</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyj0KwkAQQOFFEAyaOwxYB9bZ_BZWongAG6uwJhNNSHbi7Ob-WngAq1d8b6UiNOaQlCniRsXeD1przAvMMhOp450dtRZGmiYL1rUgNAt5csGGnh2EF7HQBB0LtLw8RoLGBnqy9OR3at3Z0VP861btL-fb6ZrMwu-FfKgHXsR9qcYKy9RUuS7Mf9cHrdA4dA</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Fröhlich, Benedikt</creator><creator>Moser, Lyne</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241028</creationdate><title>Yoneda lemma and representation theorem for double categories</title><author>Fröhlich, Benedikt ; Moser, Lyne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29284396073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Categories</topic><topic>Representations</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Fröhlich, Benedikt</creatorcontrib><creatorcontrib>Moser, Lyne</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fröhlich, Benedikt</au><au>Moser, Lyne</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Yoneda lemma and representation theorem for double categories</atitle><jtitle>arXiv.org</jtitle><date>2024-10-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study (vertically) normal lax double functors valued in the weak double category \(\mathbb{C}\mathrm{at}\) of small categories, functors, profunctors and natural transformations, which we refer to as lax double presheaves. We show that for the theory of double categories they play a similar role as 2-functors valued in \(\mathrm{Cat}\) for 2-categories. We first introduce representable lax double presheaves and establish a Yoneda lemma. Then we build a Grothendieck construction which gives a 2-equivalence between lax double presheaves and discrete double fibrations over a fixed double category. Finally, we prove a representation theorem showing that a lax double presheaf is represented by an object if and only if its Grothendieck construction has a double terminal object.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2928439607
source Free E- Journals
subjects Categories
Representations
Theorems
title Yoneda lemma and representation theorem for double categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Yoneda%20lemma%20and%20representation%20theorem%20for%20double%20categories&rft.jtitle=arXiv.org&rft.au=Fr%C3%B6hlich,%20Benedikt&rft.date=2024-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2928439607%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928439607&rft_id=info:pmid/&rfr_iscdi=true