Yoneda lemma and representation theorem for double categories

We study (vertically) normal lax double functors valued in the weak double category \(\mathbb{C}\mathrm{at}\) of small categories, functors, profunctors and natural transformations, which we refer to as lax double presheaves. We show that for the theory of double categories they play a similar role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Fröhlich, Benedikt, Moser, Lyne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study (vertically) normal lax double functors valued in the weak double category \(\mathbb{C}\mathrm{at}\) of small categories, functors, profunctors and natural transformations, which we refer to as lax double presheaves. We show that for the theory of double categories they play a similar role as 2-functors valued in \(\mathrm{Cat}\) for 2-categories. We first introduce representable lax double presheaves and establish a Yoneda lemma. Then we build a Grothendieck construction which gives a 2-equivalence between lax double presheaves and discrete double fibrations over a fixed double category. Finally, we prove a representation theorem showing that a lax double presheaf is represented by an object if and only if its Grothendieck construction has a double terminal object.
ISSN:2331-8422