Engineering built-in electric fields in oxygen-deficient MnO-CeO2@Cs catalysts: enhanced performance and kinetics for the oxygen reduction reaction in aqueous/flexible zinc–air batteries

Deliberate engineering of built-in electric fields (BEFs) can facilitate electron transfer and promote asymmetrical charge distribution, thereby regulating the adsorption/desorption of reaction intermediates. Herein, an oxygen-deficiency-rich MnO-CeO2 is synthetized supported on a carbon sphere (MnO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2024-02, Vol.26 (4), p.2011-2020
Hauptverfasser: Wang, Lixia, Hu, Xinran, Li, Huatong, Huang, Zhiyang, Huang, Jia, Tayirjan Taylor Isimjan, Yang, Xiulin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deliberate engineering of built-in electric fields (BEFs) can facilitate electron transfer and promote asymmetrical charge distribution, thereby regulating the adsorption/desorption of reaction intermediates. Herein, an oxygen-deficiency-rich MnO-CeO2 is synthetized supported on a carbon sphere (MnO-CeO2@Cs), adeptly crafted with a prominent work function difference (ΔΦ) and robust BEF, targeting the electrocatalytic oxygen reduction reaction (ORR). Empirical and theoretical results substantiate that the BEF triggers interfacial charge redistribution, fine-tuning the adsorption energy of oxygen intermediates and hastening reaction kinetics. Consequently, the MnO-CeO2@Cs showcases commendable performance (E1/2 = 0.80 V and jL = 5.5 mA cm−2), outshining its single-component counterparts. Impressively, the MnO-CeO2@Cs-based zinc–air batteries (ZABs) boast an exemplary power density of 202.7 mW cm−2 and enduring stability of 297 h. Additionally, the solid-state ZAB commands a peak power density of 67.4 mW cm−2, underscoring its potential in flexible ZAB applications. This work delineates a strategic avenue to harness interfacial charge redistribution, aiming to enhance the catalytic performance and longevity of energy conversion/storage apparatuses.
ISSN:1463-9262
1463-9270
DOI:10.1039/d3gc04537d