A note on the rate of convergence of integration schemes for closed surfaces
In this paper, we issue an error analysis for integration over discrete surfaces using the surface parametrization presented in Praetorius and Stenger (Arch Numer Softw 1(1):2022, 2022) as well as prove why even-degree polynomials utilized for approximating both the smooth surface and the integrand...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2024-03, Vol.43 (2), Article 92 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we issue an error analysis for integration over discrete surfaces using the surface parametrization presented in Praetorius and Stenger (Arch Numer Softw 1(1):2022, 2022) as well as prove why even-degree polynomials utilized for approximating both the smooth surface and the integrand exhibit a higher convergence rate than odd-degree polynomials. Additionally, we provide some numerical examples that illustrate our findings and propose a potential approach that overcomes the problems associated with the original one. |
---|---|
ISSN: | 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-024-02611-y |