Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows

We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2024, Vol.73 (Suppl 1), p.247-259
1. Verfasser: Mulone, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue Suppl 1
container_start_page 247
container_title Ricerche di matematica
container_volume 73
creator Mulone, Giuseppe
description We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the energy norm are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re E there can be no transient energy growth.
doi_str_mv 10.1007/s11587-023-00789-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927855743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927855743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e86e591bbc0f974a9038e109762b188b59898db27156d9019d13ede390feb89f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOTrZbJrkKEWtUPGi55Ddna1buklNUmTf3rUrePM0DPzfP8NHyDWHWw6g7hLnUisGhWDjqg1TJ2TGdaGYKA0_JTMAIZkEoc_JRUpbgFJJKGdk_RJ8yMEjRY9xM9CUXdXtujzQ0NLebTzm8DE0MTSDd31XJ7oMB8wZqfMNXbmYe-c9bXfhK12Ss9btEl79zjl5f3x4W67Y-vXpeXm_ZrXgJjPUC5SGV1UNrVGlM-NbyMGoRVFxrStptNFNVSguF40BbhousEFhoMVKm1bMyc3Uu4_h84Ap2204RD-etIUplJZSlWJMFVOqjiGliK3dx653cbAc7I81O1mzozV7tGbVCIkJSmPYbzD-Vf9DfQO5DnAP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927855743</pqid></control><display><type>article</type><title>Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows</title><source>SpringerLink Journals</source><creator>Mulone, Giuseppe</creator><creatorcontrib>Mulone, Giuseppe</creatorcontrib><description>We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the energy norm are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re E there can be no transient energy growth.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-023-00789-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Fluid flow ; Geometry ; Hartmann flow ; Hartmann number ; Magnetohydrodynamics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Perturbation ; Probability Theory and Stochastic Processes ; Reynolds number ; Shear flow ; Stability</subject><ispartof>Ricerche di matematica, 2024, Vol.73 (Suppl 1), p.247-259</ispartof><rights>Università degli Studi di Napoli "Federico II" 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e86e591bbc0f974a9038e109762b188b59898db27156d9019d13ede390feb89f3</citedby><cites>FETCH-LOGICAL-c319t-e86e591bbc0f974a9038e109762b188b59898db27156d9019d13ede390feb89f3</cites><orcidid>0000-0002-9136-9748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-023-00789-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-023-00789-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mulone, Giuseppe</creatorcontrib><title>Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the energy norm are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re E there can be no transient energy growth.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Hartmann flow</subject><subject>Hartmann number</subject><subject>Magnetohydrodynamics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Perturbation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Stability</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngOTrZbJrkKEWtUPGi55Ddna1buklNUmTf3rUrePM0DPzfP8NHyDWHWw6g7hLnUisGhWDjqg1TJ2TGdaGYKA0_JTMAIZkEoc_JRUpbgFJJKGdk_RJ8yMEjRY9xM9CUXdXtujzQ0NLebTzm8DE0MTSDd31XJ7oMB8wZqfMNXbmYe-c9bXfhK12Ss9btEl79zjl5f3x4W67Y-vXpeXm_ZrXgJjPUC5SGV1UNrVGlM-NbyMGoRVFxrStptNFNVSguF40BbhousEFhoMVKm1bMyc3Uu4_h84Ap2204RD-etIUplJZSlWJMFVOqjiGliK3dx653cbAc7I81O1mzozV7tGbVCIkJSmPYbzD-Vf9DfQO5DnAP</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mulone, Giuseppe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9136-9748</orcidid></search><sort><creationdate>2024</creationdate><title>Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows</title><author>Mulone, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e86e591bbc0f974a9038e109762b188b59898db27156d9019d13ede390feb89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Hartmann flow</topic><topic>Hartmann number</topic><topic>Magnetohydrodynamics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Perturbation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulone, Giuseppe</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulone, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><issue>Suppl 1</issue><spage>247</spage><epage>259</epage><pages>247-259</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the energy norm are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re E there can be no transient energy growth.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-023-00789-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9136-9748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0035-5038
ispartof Ricerche di matematica, 2024, Vol.73 (Suppl 1), p.247-259
issn 0035-5038
1827-3491
language eng
recordid cdi_proquest_journals_2927855743
source SpringerLink Journals
subjects Algebra
Analysis
Fluid flow
Geometry
Hartmann flow
Hartmann number
Magnetohydrodynamics
Mathematics
Mathematics and Statistics
Numerical Analysis
Perturbation
Probability Theory and Stochastic Processes
Reynolds number
Shear flow
Stability
title Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20energy%20stability%20of%20magnetohydrodynamics%20Couette%20and%20Hartmann%20flows&rft.jtitle=Ricerche%20di%20matematica&rft.au=Mulone,%20Giuseppe&rft.date=2024&rft.volume=73&rft.issue=Suppl%201&rft.spage=247&rft.epage=259&rft.pages=247-259&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-023-00789-7&rft_dat=%3Cproquest_cross%3E2927855743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927855743&rft_id=info:pmid/&rfr_iscdi=true