Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows
We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selecte...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2024, Vol.73 (Suppl 1), p.247-259 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | Suppl 1 |
container_start_page | 247 |
container_title | Ricerche di matematica |
container_volume | 73 |
creator | Mulone, Giuseppe |
description | We study the monotone nonlinear energy stability of
magnetohydrodynamics plane shear flows, Couette and Hartmann flows
. We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re
E
for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the
energy norm
are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re
E
there can be no transient energy growth. |
doi_str_mv | 10.1007/s11587-023-00789-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927855743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927855743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e86e591bbc0f974a9038e109762b188b59898db27156d9019d13ede390feb89f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOTrZbJrkKEWtUPGi55Ddna1buklNUmTf3rUrePM0DPzfP8NHyDWHWw6g7hLnUisGhWDjqg1TJ2TGdaGYKA0_JTMAIZkEoc_JRUpbgFJJKGdk_RJ8yMEjRY9xM9CUXdXtujzQ0NLebTzm8DE0MTSDd31XJ7oMB8wZqfMNXbmYe-c9bXfhK12Ss9btEl79zjl5f3x4W67Y-vXpeXm_ZrXgJjPUC5SGV1UNrVGlM-NbyMGoRVFxrStptNFNVSguF40BbhousEFhoMVKm1bMyc3Uu4_h84Ap2204RD-etIUplJZSlWJMFVOqjiGliK3dx653cbAc7I81O1mzozV7tGbVCIkJSmPYbzD-Vf9DfQO5DnAP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927855743</pqid></control><display><type>article</type><title>Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows</title><source>SpringerLink Journals</source><creator>Mulone, Giuseppe</creator><creatorcontrib>Mulone, Giuseppe</creatorcontrib><description>We study the monotone nonlinear energy stability of
magnetohydrodynamics plane shear flows, Couette and Hartmann flows
. We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re
E
for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the
energy norm
are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re
E
there can be no transient energy growth.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-023-00789-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Fluid flow ; Geometry ; Hartmann flow ; Hartmann number ; Magnetohydrodynamics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Perturbation ; Probability Theory and Stochastic Processes ; Reynolds number ; Shear flow ; Stability</subject><ispartof>Ricerche di matematica, 2024, Vol.73 (Suppl 1), p.247-259</ispartof><rights>Università degli Studi di Napoli "Federico II" 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e86e591bbc0f974a9038e109762b188b59898db27156d9019d13ede390feb89f3</citedby><cites>FETCH-LOGICAL-c319t-e86e591bbc0f974a9038e109762b188b59898db27156d9019d13ede390feb89f3</cites><orcidid>0000-0002-9136-9748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-023-00789-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-023-00789-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mulone, Giuseppe</creatorcontrib><title>Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>We study the monotone nonlinear energy stability of
magnetohydrodynamics plane shear flows, Couette and Hartmann flows
. We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re
E
for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the
energy norm
are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re
E
there can be no transient energy growth.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Hartmann flow</subject><subject>Hartmann number</subject><subject>Magnetohydrodynamics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Perturbation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Stability</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngOTrZbJrkKEWtUPGi55Ddna1buklNUmTf3rUrePM0DPzfP8NHyDWHWw6g7hLnUisGhWDjqg1TJ2TGdaGYKA0_JTMAIZkEoc_JRUpbgFJJKGdk_RJ8yMEjRY9xM9CUXdXtujzQ0NLebTzm8DE0MTSDd31XJ7oMB8wZqfMNXbmYe-c9bXfhK12Ss9btEl79zjl5f3x4W67Y-vXpeXm_ZrXgJjPUC5SGV1UNrVGlM-NbyMGoRVFxrStptNFNVSguF40BbhousEFhoMVKm1bMyc3Uu4_h84Ap2204RD-etIUplJZSlWJMFVOqjiGliK3dx653cbAc7I81O1mzozV7tGbVCIkJSmPYbzD-Vf9DfQO5DnAP</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mulone, Giuseppe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9136-9748</orcidid></search><sort><creationdate>2024</creationdate><title>Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows</title><author>Mulone, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e86e591bbc0f974a9038e109762b188b59898db27156d9019d13ede390feb89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Hartmann flow</topic><topic>Hartmann number</topic><topic>Magnetohydrodynamics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Perturbation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulone, Giuseppe</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulone, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><issue>Suppl 1</issue><spage>247</spage><epage>259</epage><pages>247-259</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>We study the monotone nonlinear energy stability of
magnetohydrodynamics plane shear flows, Couette and Hartmann flows
. We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re
E
for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the
energy norm
are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re
E
there can be no transient energy growth.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-023-00789-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9136-9748</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-5038 |
ispartof | Ricerche di matematica, 2024, Vol.73 (Suppl 1), p.247-259 |
issn | 0035-5038 1827-3491 |
language | eng |
recordid | cdi_proquest_journals_2927855743 |
source | SpringerLink Journals |
subjects | Algebra Analysis Fluid flow Geometry Hartmann flow Hartmann number Magnetohydrodynamics Mathematics Mathematics and Statistics Numerical Analysis Perturbation Probability Theory and Stochastic Processes Reynolds number Shear flow Stability |
title | Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20energy%20stability%20of%20magnetohydrodynamics%20Couette%20and%20Hartmann%20flows&rft.jtitle=Ricerche%20di%20matematica&rft.au=Mulone,%20Giuseppe&rft.date=2024&rft.volume=73&rft.issue=Suppl%201&rft.spage=247&rft.epage=259&rft.pages=247-259&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-023-00789-7&rft_dat=%3Cproquest_cross%3E2927855743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927855743&rft_id=info:pmid/&rfr_iscdi=true |