Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows

We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2024, Vol.73 (Suppl 1), p.247-259
1. Verfasser: Mulone, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the energy norm are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re E there can be no transient energy growth.
ISSN:0035-5038
1827-3491
DOI:10.1007/s11587-023-00789-7