Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows
We study the monotone nonlinear energy stability of magnetohydrodynamics plane shear flows, Couette and Hartmann flows . We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re E for some selecte...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2024, Vol.73 (Suppl 1), p.247-259 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the monotone nonlinear energy stability of
magnetohydrodynamics plane shear flows, Couette and Hartmann flows
. We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some critical Reynolds numbers Re
E
for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla, Mulone and Perrone, and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the
energy norm
are the twodimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re
E
there can be no transient energy growth. |
---|---|
ISSN: | 0035-5038 1827-3491 |
DOI: | 10.1007/s11587-023-00789-7 |