One-dimensional Barenblatt-type solutions and related inequalities

We present and discuss connections between the problem of trend to equilibrium for one-dimensional Fokker–Planck equations, and one-dimensional functional inequalities of the type of Poincaré and Wirtinger, with weight, for probability densities in the form of one-dimensional Barenblatt solutions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2024, Vol.73 (Suppl 1), p.309-321
1. Verfasser: Toscani, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present and discuss connections between the problem of trend to equilibrium for one-dimensional Fokker–Planck equations, and one-dimensional functional inequalities of the type of Poincaré and Wirtinger, with weight, for probability densities in the form of one-dimensional Barenblatt solutions of the porous medium equation. It it also shown that Hardy’s classical one-dimensional inequality can be obtained resorting to the differential expression of the Cauchy-type density, as given by a related Fokker–Planck equation.
ISSN:0035-5038
1827-3491
DOI:10.1007/s11587-023-00786-w