Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons
A novel method for controlling and manipulating quantum states of both matter and field has been developed. The approach has been applied to govern the population in rotational levels of weakly aligned molecules. This technique entails the use of an adiabatically varying electric field to interact w...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2023-12, Vol.232 (20-22), p.3359-3367 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel method for controlling and manipulating quantum states of both matter and field has been developed. The approach has been applied to govern the population in rotational levels of weakly aligned molecules. This technique entails the use of an adiabatically varying electric field to interact with dipole molecules. The interaction of weakly aligned molecules with a microwave field within a high finesse cavity indicates the feasibility of achieving population inversion, rendering them well suited for maser operation even at room temperature. In addition to this, the research has shown that the absorption of molecules can be controlled too making it exceptionally well suited for gas sensing with high sensitivity and selectivity. These sensors hold promise across diverse domains, including technology, the sciences, environmental monitoring, biology, and medicine. Furthermore, the technique has the potential for employing control techniques to vacuum fields that holds promise for the generation of strongly correlated, entangled photons. This development could have far-reaching implications in quantum technology, and various applications in quantum information science and beyond. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjs/s11734-023-01009-x |