Deep attention transformer nets for accurate analysis of oil spilled images to minimize pollution in the marine environment

Oil spills in maritime areas pose a serious environmental risk, wreaking havoc on marine ecosystems, coastal habitats, and local residents. An accurate and timely evaluation of oil spill occurrences and extent is critical for effective pollution control and mitigation. In this study, we present a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2024-01, Vol.46 (2), p.3461
Hauptverfasser: Sathya, S, J Senthil Murugan, Surendran, S, Sundar, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oil spills in maritime areas pose a serious environmental risk, wreaking havoc on marine ecosystems, coastal habitats, and local residents. An accurate and timely evaluation of oil spill occurrences and extent is critical for effective pollution control and mitigation. In this study, we present a novel and cutting-edge approach for analyzing oil-spilled images using Deep Attention Transformer Nets (DATN) with Collective Intelligence (CI), with the goal of reducing pollution in the marine environment. This method takes advantage of deep learning capability, notably the incorporation of transformer-based attention processes, to improve the identification and measurement of oil spills in satellite and aerial images. The DATN model is intended to learn complicated features from images automatically, capturing complex patterns associated with oil spills and their surrounding context. The model chooses focus on key regions and add spatial links by using attention mechanisms, allowing for a more comprehensive understanding of the environmental influence. We thoroughly test DATN performance using a variety of datasets encompassing various oil spill scenarios and environmental circumstances. The results show that DATN surpasses standard approaches and other deep learning models in recognizing oil spill regions, with excellent accuracy, precision, and recall rates. Furthermore, the model has strong generalization capabilities across a wide range of image sources and situations.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-235657