Thermal Stability of Thick Films Based on Low-Temperature Thermoelectric Materials of Bi-Te-Se and Bi-Te-Sb Systems Modified with Copper-Oxide Additives

—The development of flexible thermoelectric generators (alternative energy sources) using screen-printing technology is a promising direction. To produce such generators, low-temperature thermoelectric materials of the Bi-Te-Se and Bi-Te-Sb systems are used. The properties of thick-film samples can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2023, Vol.57 (1), p.28-30
Hauptverfasser: Babich, A. V., Voloshchuk, I. A., Sherchenkov, A. A., Pereverzeva, S. Yu, Glebova, D. D., Babich, T. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:—The development of flexible thermoelectric generators (alternative energy sources) using screen-printing technology is a promising direction. To produce such generators, low-temperature thermoelectric materials of the Bi-Te-Se and Bi-Te-Sb systems are used. The properties of thick-film samples can be improved by introducing nanodispersed highly conductive copper-oxide powder CuO. However, the thermal stability of such materials has still not been studied. This work investigates the thermal properties and stability of thick films based on low-temperature thermoelectric-material of the systems Bi-Te-Se ( n -type) and Bi-Te-Sb ( p -type), doped by CuO. It is determined that thick-film samples containing 0.1% CuO additive have the best thermoelectric characteristics. It is shown that in the studied temperature range (from room temperature to 550 K) the samples are stable, there are no pronounced thermal effects and changes in the mass of the samples. In addition, repeated measurements do not lead to phase separation or other undesirable processes. It is established that thick films based on low-temperature thermoelectric materials of the Bi-Te-Se and Bi-Te-Sb systems, modified with copper-oxide additives, can be used for the manufacture of flexible thermoelectric devices.
ISSN:1063-7826
1090-6479
DOI:10.1134/S1063782623010013