Idiopathic pulmonary fibrosis essential biomarkers and immunological infiltration in lung tissue are identified by a bioinformatics analysis

OBJECTIVE: This research aims to pinpoint key biomarkers and immunological infiltration of idiopathic pulmonary fibrosis (IPF) through bioinformatics analysis. METHODS: From the GEO database, 12 gene expression profiles were obtained. The LIMMA tool in Bioconductor accustomed to identify the genes t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2024-02, Vol.46 (2), p.5479-5489
Hauptverfasser: Zhou, Sijiang, Mo, Kanglin, Yang, Xia, Ning, Zong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVE: This research aims to pinpoint key biomarkers and immunological infiltration of idiopathic pulmonary fibrosis (IPF) through bioinformatics analysis. METHODS: From the GEO database, 12 gene expression profiles were obtained. The LIMMA tool in Bioconductor accustomed to identify the genes that are expressed differently (DEGs), and analyses of functional enrichment were performed. A protein-protein interaction network (PPI) was constructed using STRING and Cytoscape, and a modular analysis was performed. Analysis of the immunological infiltration of lung tissue between IPF and healthy groups was done using the CIBERSORTx method. RESULTS: 11,130 genes with differential expression (including 7,492 up-regulated and 3,638 down-regulated) were found. The selected up-regulated DEGs were mainly involved in the progression of pulmonary fibrosis and the selected down-regulated DEGs maintain the relative stability of intracellular microenvironment, according to functional enrichment analysis. KEGG enrichment analysis revealed that up-regulated DEGs were primarily abundant in the PI3K-Akt signaling mechanism, whereas down-regulated DEGs were associated with cancer pathways. The most significant modules involving 8 hub genes were found after the PPI network was analyzed. IPF lung tissue had a greater percentage of B memory cells, plasma cells, T cells follicular helper, T cells regulatory, T cells gamma delta, macrophages M0 and resting mast cells. while a relatively low proportion of T cells CD4 memory resting, NK cells resting and neutrophils. CONCLUSION: This research demonstrates the differences of hub genes and immunological infiltration in IPF.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-234957