Fuzzy RBF neural network fault diagnosis method based on knowledge and data fusion for the recoil system

To improve the accuracy of fault diagnosis for recoil systems under multiple operating conditions, a fuzzy RBF neural network (Radial Basis Function, RBF) fault diagnosis method based on knowledge and data fusion is proposed. A kinetic model for the recoil system is first established to describe the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2024-02, Vol.46 (2), p.4981-4994
Hauptverfasser: Yang, Xiangfei, Zhang, Faping, Wei, Jianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the accuracy of fault diagnosis for recoil systems under multiple operating conditions, a fuzzy RBF neural network (Radial Basis Function, RBF) fault diagnosis method based on knowledge and data fusion is proposed. A kinetic model for the recoil system is first established to describe the system’s behavior. Next, fuzzy RBF neural network is used to establish the relationship between abnormal operating parameters and fault causes, achieving a fault cause diagnosis accurately based on the integration of expert experience knowledge and system operation data. A study case demonstrate that the algorithm has strong knowledge and data fusion capabilities and can effectively identify faults in recoil system.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-230683