Differences between Lyapunov exponents for the simple random walk in Bernoulli potentials

We consider the simple random walk on the d-dimensional lattice $\mathbb{Z}^d$ ( $d \geq 1$ ), traveling in potentials which are Bernoulli-distributed. The so-called Lyapunov exponent describes the cost of traveling for the simple random walk in the potential, and it is known that the Lyapunov expon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2024-03, Vol.61 (1), p.82-103
1. Verfasser: Kubota, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the simple random walk on the d-dimensional lattice $\mathbb{Z}^d$ ( $d \geq 1$ ), traveling in potentials which are Bernoulli-distributed. The so-called Lyapunov exponent describes the cost of traveling for the simple random walk in the potential, and it is known that the Lyapunov exponent is strictly monotone in the parameter of the Bernoulli distribution. Hence the aim of this paper is to investigate the effect of the potential on the Lyapunov exponent more precisely, and we derive some Lipschitz-type estimates for the difference between the Lyapunov exponents.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2023.35