A hybrid descriptor for low-textural image stitching in real-time surface inspection systems
Surface inspection systems in the steel industry use multiple machine-vision (MV) cameras to inspect steel sheets for real-time quality control. Conventional approaches are classified into direct, deep-learning-based, and feature-based methodologies. Direct techniques perform poorly on parallax, whi...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-02, Vol.83 (7), p.20653-20675 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface inspection systems in the steel industry use multiple machine-vision (MV) cameras to inspect steel sheets for real-time quality control. Conventional approaches are classified into direct, deep-learning-based, and feature-based methodologies. Direct techniques perform poorly on parallax, while deep-learning-based algorithms require higher execution times and are ineffective for real-time applications. We propose a hybrid descriptor that uses defect detection to effectively stitch low-textural images captured by multiple cameras that are evaluated based on matching accuracy, execution time, and quality of stitched images and compared to popular feature-based image descriptor algorithms. Experimental results show that the proposed hybrid descriptor outperforms existing feature descriptors with 91% matching accuracy and an execution time of 49 milliseconds, producing a seamlessly stitched output. |
---|---|
ISSN: | 1573-7721 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-023-16357-y |