Uncalibrated visual servoing based on Kalman filter and mixed-kernel online sequential extreme learning machine for robot manipulator
Visual servoing systems may suffer from interference by system noise when a Kalman filter is used to obtain a Jacobian matrix. Such interference may result in slow and poor convergence performance of the servoing system. To overcome these problems, we propose a mixed-kernel online sequential extreme...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-02, Vol.83 (7), p.18853-18879 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Visual servoing systems may suffer from interference by system noise when a Kalman filter is used to obtain a Jacobian matrix. Such interference may result in slow and poor convergence performance of the servoing system. To overcome these problems, we propose a mixed-kernel online sequential extreme learning machine (MIXEDKOSELM) with Kalman filter, which corrects the error of Kalman filtering algorithm, thus improving the accuracy of the image-based visual servoing (IBVS) system significantly. The proposed KF-MIXEDKOSELM-IBVS does not require the camera parameters in the servoing process, and it is highly robust to disturbance and noise statistical errors. The proposed KF-MIXEDKOSELM-IBVS is validated using the PUMA 560 manipulator in the MATLAB simulation environment. The simulation results clearly reveal that the KF-MIXEDKOSELM-IBVS algorithm has excellent performance by being robust and accurate. |
---|---|
ISSN: | 1573-7721 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-023-16381-y |