Topological Symmetry Groups of the Generalized Petersen Graphs

The topological symmetry group \(\mathrm{TSG}(\Gamma)\) of an embedding \(\Gamma\) of a graph in \(S^3\) is the subgroup of the automorphism group of the graph which is induced by homeomorphisms of \((S^3,\Gamma)\). If we restrict to orientation preserving homeomorphisms then we obtain the orientati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Álvarez, A, Flapan, E, Hunnell, M, Hutchens, J, Lawrence, E, Lewis, P, Price, C, Vanderpool, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The topological symmetry group \(\mathrm{TSG}(\Gamma)\) of an embedding \(\Gamma\) of a graph in \(S^3\) is the subgroup of the automorphism group of the graph which is induced by homeomorphisms of \((S^3,\Gamma)\). If we restrict to orientation preserving homeomorphisms then we obtain the orientation preserving topological symmetry group \(\mathrm{TSG}_+(\Gamma)\). In this paper we determine all groups that can be \(\mathrm{TSG}(\Gamma)\) or \(\mathrm{TSG}_+(\Gamma)\) for some embedding \(\Gamma\) of a generalized Petersen graph other than the exceptional graphs \(P(12,5)\) and \(P(24, 5)\) (which will be addressed in a separate paper.
ISSN:2331-8422