Data-driven identification and pressure fields prediction for parallel twin cylinders based on POD and DMD method
The mode analysis of parallel twin cylinders is conducted in this paper using two data-driven methods: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). First, a high-fidelity computational fluid dynamics (CFD) model of parallel twin cylinders is established, and numerical...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-02, Vol.36 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mode analysis of parallel twin cylinders is conducted in this paper using two data-driven methods: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). First, a high-fidelity computational fluid dynamics (CFD) model of parallel twin cylinders is established, and numerical simulations of the model are carried out. Subsequently, the fundamental principles of the POD and DMD algorithms are systematically introduced. Utilizing snapshots obtained from the high-fidelity CFD model, the POD and DMD methods are employed to extract the dominant flow structures. Furthermore, a comparison between the two data-driven methods is conducted by analyzing modal frequencies, pressure distribution, and the reconstruction errors of pressure fields. Finally, the pressure fields of non-sample points are predicted based on the POD–backpropagation neural network (BPNN) surrogate model and the DMD method, and the predicted results are compared with the CFD simulation results. It found that (i) the DMD method is capable of extracting the main coherent structures of the pressure fields, directly obtaining flow modes and their corresponding frequencies, and assessing the stability of flow modes; (ii) the DMD method can capture the main flow features of the pressure fields in both spatial and temporal dimensions, while the POD method is primarily efficient at capturing the spatial features of the pressure fields; (iii) in contrast to the frequency-ranked DMD method, the energy-ranked POD method can reconstruct the pressure fields using a smaller number of modes, indicating that the POD method has an advantage in terms of mode reduction; (iv) in contrast to the energy-ranked POD method, the frequency-ranked DMD method has a wider applicability to the range of flow types and has more advantages in stability analysis of complex dynamic systems; (v) the predicted pressure fields around the cylinder using the first five-order POD modes or DMD modes closely align with CFD calculation results. Additionally, the evolution of pressure fields predicted by the POD–BPNN surrogate model with the first five-order POD modes or the DMD method with the first 200-order DMD modes significantly agrees with CFD simulation results; (vi) the combined use of the POD–BPNN surrogate model and DMD methods allows efficient interpolation and extrapolation of samples, delivering exceptional predictive performance. This study offers insight into the coherent structures in parallel twin cyl |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0185882 |