Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion
Background Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down. Objective The i...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2024-02, Vol.64 (2), p.181-195 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 2 |
container_start_page | 181 |
container_title | Experimental mechanics |
container_volume | 64 |
creator | Georgilas, K. Guo, H. Ahmad, B. Khan, R. H. U. Fitzpatrick, M. E. Kartal, M. E. |
description | Background
Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down.
Objective
The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined.
Methods
The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components.
Results
The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability.
Conclusion
Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed. |
doi_str_mv | 10.1007/s11340-023-01018-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926609644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926609644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cbb2f0e803e861ffee04cb8fb6cc1fd005095fc8593f9d46cb2c8c176a65b953</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwFPAc_Tlz2azx1qsClWL7T3sZpN2y7qpyS6l395oBW-ehjfMzIMfQtcUbilAfhcp5QIIME6AAlVkf4JGNBeUsFxmp2gEQAURKqPn6CLGLaQSz9kILd9tbOqhbPGyDzZGG3HT4Unb-gN-fs2pwovg68HYGq82wQ_rDX5Jd1v2yZmX0Qa88Ps6yX0yZkNsfHeJzlzZRnv1q2O0mj2spk9k_vb4PJ3MieFU9MRUFXNgFXCrJHXOWhCmUq6SxlBXA2RQZM6orOCuqIU0FTPK0FyWMquKjI_RzXF2F_znYGOvt34IXfqoWcGkhEIKkVLsmDLBxxis07vQfJThoCnob3b6yE4ndvqHnd6nEj-WYgp3axv-pv9pfQGB53G3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926609644</pqid></control><display><type>article</type><title>Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion</title><source>SpringerLink Journals</source><creator>Georgilas, K. ; Guo, H. ; Ahmad, B. ; Khan, R. H. U. ; Fitzpatrick, M. E. ; Kartal, M. E.</creator><creatorcontrib>Georgilas, K. ; Guo, H. ; Ahmad, B. ; Khan, R. H. U. ; Fitzpatrick, M. E. ; Kartal, M. E.</creatorcontrib><description>Background
Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down.
Objective
The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined.
Methods
The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components.
Results
The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability.
Conclusion
Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-023-01018-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Dynamical Systems ; Engineering ; Lasers ; Manufacturing ; Measurement methods ; Nickel base alloys ; Optical Devices ; Optics ; Photonics ; Powder beds ; Research Paper ; Residual stress ; Solid Mechanics ; Stress distribution ; Stress measurement ; Superalloys ; Temperature gradients ; Vibration</subject><ispartof>Experimental mechanics, 2024-02, Vol.64 (2), p.181-195</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-cbb2f0e803e861ffee04cb8fb6cc1fd005095fc8593f9d46cb2c8c176a65b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-023-01018-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-023-01018-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Georgilas, K.</creatorcontrib><creatorcontrib>Guo, H.</creatorcontrib><creatorcontrib>Ahmad, B.</creatorcontrib><creatorcontrib>Khan, R. H. U.</creatorcontrib><creatorcontrib>Fitzpatrick, M. E.</creatorcontrib><creatorcontrib>Kartal, M. E.</creatorcontrib><title>Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>Background
Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down.
Objective
The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined.
Methods
The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components.
Results
The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability.
Conclusion
Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Measurement methods</subject><subject>Nickel base alloys</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Powder beds</subject><subject>Research Paper</subject><subject>Residual stress</subject><subject>Solid Mechanics</subject><subject>Stress distribution</subject><subject>Stress measurement</subject><subject>Superalloys</subject><subject>Temperature gradients</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfwFPAc_Tlz2azx1qsClWL7T3sZpN2y7qpyS6l395oBW-ehjfMzIMfQtcUbilAfhcp5QIIME6AAlVkf4JGNBeUsFxmp2gEQAURKqPn6CLGLaQSz9kILd9tbOqhbPGyDzZGG3HT4Unb-gN-fs2pwovg68HYGq82wQ_rDX5Jd1v2yZmX0Qa88Ps6yX0yZkNsfHeJzlzZRnv1q2O0mj2spk9k_vb4PJ3MieFU9MRUFXNgFXCrJHXOWhCmUq6SxlBXA2RQZM6orOCuqIU0FTPK0FyWMquKjI_RzXF2F_znYGOvt34IXfqoWcGkhEIKkVLsmDLBxxis07vQfJThoCnob3b6yE4ndvqHnd6nEj-WYgp3axv-pv9pfQGB53G3</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Georgilas, K.</creator><creator>Guo, H.</creator><creator>Ahmad, B.</creator><creator>Khan, R. H. U.</creator><creator>Fitzpatrick, M. E.</creator><creator>Kartal, M. E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion</title><author>Georgilas, K. ; Guo, H. ; Ahmad, B. ; Khan, R. H. U. ; Fitzpatrick, M. E. ; Kartal, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cbb2f0e803e861ffee04cb8fb6cc1fd005095fc8593f9d46cb2c8c176a65b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Measurement methods</topic><topic>Nickel base alloys</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Powder beds</topic><topic>Research Paper</topic><topic>Residual stress</topic><topic>Solid Mechanics</topic><topic>Stress distribution</topic><topic>Stress measurement</topic><topic>Superalloys</topic><topic>Temperature gradients</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgilas, K.</creatorcontrib><creatorcontrib>Guo, H.</creatorcontrib><creatorcontrib>Ahmad, B.</creatorcontrib><creatorcontrib>Khan, R. H. U.</creatorcontrib><creatorcontrib>Fitzpatrick, M. E.</creatorcontrib><creatorcontrib>Kartal, M. E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgilas, K.</au><au>Guo, H.</au><au>Ahmad, B.</au><au>Khan, R. H. U.</au><au>Fitzpatrick, M. E.</au><au>Kartal, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>64</volume><issue>2</issue><spage>181</spage><epage>195</epage><pages>181-195</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>Background
Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down.
Objective
The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined.
Methods
The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components.
Results
The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability.
Conclusion
Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-023-01018-w</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4851 |
ispartof | Experimental mechanics, 2024-02, Vol.64 (2), p.181-195 |
issn | 0014-4851 1741-2765 |
language | eng |
recordid | cdi_proquest_journals_2926609644 |
source | SpringerLink Journals |
subjects | Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Control Dynamical Systems Engineering Lasers Manufacturing Measurement methods Nickel base alloys Optical Devices Optics Photonics Powder beds Research Paper Residual stress Solid Mechanics Stress distribution Stress measurement Superalloys Temperature gradients Vibration |
title | Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20Stresses%20in%20Alloy%20IN718%20Produced%20Through%20Modulated%20Laser%20Powder%20Bed%20Fusion&rft.jtitle=Experimental%20mechanics&rft.au=Georgilas,%20K.&rft.date=2024-02-01&rft.volume=64&rft.issue=2&rft.spage=181&rft.epage=195&rft.pages=181-195&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-023-01018-w&rft_dat=%3Cproquest_cross%3E2926609644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926609644&rft_id=info:pmid/&rfr_iscdi=true |