Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion

Background Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down. Objective The i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 2024-02, Vol.64 (2), p.181-195
Hauptverfasser: Georgilas, K., Guo, H., Ahmad, B., Khan, R. H. U., Fitzpatrick, M. E., Kartal, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 181
container_title Experimental mechanics
container_volume 64
creator Georgilas, K.
Guo, H.
Ahmad, B.
Khan, R. H. U.
Fitzpatrick, M. E.
Kartal, M. E.
description Background Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down. Objective The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined. Methods The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components. Results The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability. Conclusion Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed.
doi_str_mv 10.1007/s11340-023-01018-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926609644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926609644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cbb2f0e803e861ffee04cb8fb6cc1fd005095fc8593f9d46cb2c8c176a65b953</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwFPAc_Tlz2azx1qsClWL7T3sZpN2y7qpyS6l395oBW-ehjfMzIMfQtcUbilAfhcp5QIIME6AAlVkf4JGNBeUsFxmp2gEQAURKqPn6CLGLaQSz9kILd9tbOqhbPGyDzZGG3HT4Unb-gN-fs2pwovg68HYGq82wQ_rDX5Jd1v2yZmX0Qa88Ps6yX0yZkNsfHeJzlzZRnv1q2O0mj2spk9k_vb4PJ3MieFU9MRUFXNgFXCrJHXOWhCmUq6SxlBXA2RQZM6orOCuqIU0FTPK0FyWMquKjI_RzXF2F_znYGOvt34IXfqoWcGkhEIKkVLsmDLBxxis07vQfJThoCnob3b6yE4ndvqHnd6nEj-WYgp3axv-pv9pfQGB53G3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926609644</pqid></control><display><type>article</type><title>Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion</title><source>SpringerLink Journals</source><creator>Georgilas, K. ; Guo, H. ; Ahmad, B. ; Khan, R. H. U. ; Fitzpatrick, M. E. ; Kartal, M. E.</creator><creatorcontrib>Georgilas, K. ; Guo, H. ; Ahmad, B. ; Khan, R. H. U. ; Fitzpatrick, M. E. ; Kartal, M. E.</creatorcontrib><description>Background Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down. Objective The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined. Methods The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components. Results The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability. Conclusion Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-023-01018-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Dynamical Systems ; Engineering ; Lasers ; Manufacturing ; Measurement methods ; Nickel base alloys ; Optical Devices ; Optics ; Photonics ; Powder beds ; Research Paper ; Residual stress ; Solid Mechanics ; Stress distribution ; Stress measurement ; Superalloys ; Temperature gradients ; Vibration</subject><ispartof>Experimental mechanics, 2024-02, Vol.64 (2), p.181-195</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-cbb2f0e803e861ffee04cb8fb6cc1fd005095fc8593f9d46cb2c8c176a65b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-023-01018-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-023-01018-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Georgilas, K.</creatorcontrib><creatorcontrib>Guo, H.</creatorcontrib><creatorcontrib>Ahmad, B.</creatorcontrib><creatorcontrib>Khan, R. H. U.</creatorcontrib><creatorcontrib>Fitzpatrick, M. E.</creatorcontrib><creatorcontrib>Kartal, M. E.</creatorcontrib><title>Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>Background Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down. Objective The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined. Methods The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components. Results The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability. Conclusion Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Measurement methods</subject><subject>Nickel base alloys</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Powder beds</subject><subject>Research Paper</subject><subject>Residual stress</subject><subject>Solid Mechanics</subject><subject>Stress distribution</subject><subject>Stress measurement</subject><subject>Superalloys</subject><subject>Temperature gradients</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfwFPAc_Tlz2azx1qsClWL7T3sZpN2y7qpyS6l395oBW-ehjfMzIMfQtcUbilAfhcp5QIIME6AAlVkf4JGNBeUsFxmp2gEQAURKqPn6CLGLaQSz9kILd9tbOqhbPGyDzZGG3HT4Unb-gN-fs2pwovg68HYGq82wQ_rDX5Jd1v2yZmX0Qa88Ps6yX0yZkNsfHeJzlzZRnv1q2O0mj2spk9k_vb4PJ3MieFU9MRUFXNgFXCrJHXOWhCmUq6SxlBXA2RQZM6orOCuqIU0FTPK0FyWMquKjI_RzXF2F_znYGOvt34IXfqoWcGkhEIKkVLsmDLBxxis07vQfJThoCnob3b6yE4ndvqHnd6nEj-WYgp3axv-pv9pfQGB53G3</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Georgilas, K.</creator><creator>Guo, H.</creator><creator>Ahmad, B.</creator><creator>Khan, R. H. U.</creator><creator>Fitzpatrick, M. E.</creator><creator>Kartal, M. E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion</title><author>Georgilas, K. ; Guo, H. ; Ahmad, B. ; Khan, R. H. U. ; Fitzpatrick, M. E. ; Kartal, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cbb2f0e803e861ffee04cb8fb6cc1fd005095fc8593f9d46cb2c8c176a65b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Measurement methods</topic><topic>Nickel base alloys</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Powder beds</topic><topic>Research Paper</topic><topic>Residual stress</topic><topic>Solid Mechanics</topic><topic>Stress distribution</topic><topic>Stress measurement</topic><topic>Superalloys</topic><topic>Temperature gradients</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgilas, K.</creatorcontrib><creatorcontrib>Guo, H.</creatorcontrib><creatorcontrib>Ahmad, B.</creatorcontrib><creatorcontrib>Khan, R. H. U.</creatorcontrib><creatorcontrib>Fitzpatrick, M. E.</creatorcontrib><creatorcontrib>Kartal, M. E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgilas, K.</au><au>Guo, H.</au><au>Ahmad, B.</au><au>Khan, R. H. U.</au><au>Fitzpatrick, M. E.</au><au>Kartal, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>64</volume><issue>2</issue><spage>181</spage><epage>195</epage><pages>181-195</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>Background Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down. Objective The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined. Methods The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components. Results The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability. Conclusion Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-023-01018-w</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4851
ispartof Experimental mechanics, 2024-02, Vol.64 (2), p.181-195
issn 0014-4851
1741-2765
language eng
recordid cdi_proquest_journals_2926609644
source SpringerLink Journals
subjects Biomedical Engineering and Bioengineering
Characterization and Evaluation of Materials
Control
Dynamical Systems
Engineering
Lasers
Manufacturing
Measurement methods
Nickel base alloys
Optical Devices
Optics
Photonics
Powder beds
Research Paper
Residual stress
Solid Mechanics
Stress distribution
Stress measurement
Superalloys
Temperature gradients
Vibration
title Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20Stresses%20in%20Alloy%20IN718%20Produced%20Through%20Modulated%20Laser%20Powder%20Bed%20Fusion&rft.jtitle=Experimental%20mechanics&rft.au=Georgilas,%20K.&rft.date=2024-02-01&rft.volume=64&rft.issue=2&rft.spage=181&rft.epage=195&rft.pages=181-195&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-023-01018-w&rft_dat=%3Cproquest_cross%3E2926609644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926609644&rft_id=info:pmid/&rfr_iscdi=true