Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusion
Background Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down. Objective The i...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2024-02, Vol.64 (2), p.181-195 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Laser powder bed fusion (L-PBF) additive manufacturing (AM) is used for building metallic parts layer-by-layer and often generates non-uniform thermal gradients between layers during fabrication, resulting in the development of residual stresses when parts are cooled down.
Objective
The impact of modulated laser used during the L-PBF process on residual stresses in Inconel 718 (IN718) material was investigated. The impact of build directions on residual stress is also determined.
Methods
The contour method is employed to measure the full-field residual stress component on the cross-section of samples. A complementary residual stress measurement method, incremental hole drilling, was employed for obtaining in-plane residual stress components.
Results
The results show that the residual stress distribution is sensitive to the build direction, with a higher magnitude of residual stress in the direction of build than that in the transverse direction. Multiple measurements with the same manufacturing parameters show good repeatability.
Conclusion
Residual stresses in the as-built parts are significant and hence a further consideration regarding relieving residual stresses is required when post-thermal treatments are developed. |
---|---|
ISSN: | 0014-4851 1741-2765 |
DOI: | 10.1007/s11340-023-01018-w |