K-theory of noncommutative Bernoulli shifts

For a large class of C ∗ -algebras A , we calculate the K -theory of reduced crossed products A ⊗ G ⋊ r G of Bernoulli shifts by groups satisfying the Baum–Connes conjecture. In particular, we give explicit formulas for finite-dimensional C ∗ -algebras, UHF-algebras, rotation algebras, and several o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-01, Vol.388 (3), p.2671-2703
Hauptverfasser: Chakraborty, Sayan, Echterhoff, Siegfried, Kranz, Julian, Nishikawa, Shintaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a large class of C ∗ -algebras A , we calculate the K -theory of reduced crossed products A ⊗ G ⋊ r G of Bernoulli shifts by groups satisfying the Baum–Connes conjecture. In particular, we give explicit formulas for finite-dimensional C ∗ -algebras, UHF-algebras, rotation algebras, and several other examples. As an application, we obtain a formula for the K -theory of reduced C ∗ -algebras of wreath products H ≀ G for large classes of groups H and G . Our methods use a generalization of techniques developed by the second named author together with Joachim Cuntz and Xin Li, and a trivialization theorem for finite group actions on UHF algebras developed in a companion paper by the third and fourth named authors.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-023-02587-w