Integral points on cubic twists of Mordell curves
Fix a non-square integer k ≠ 0 . We show that the number of curves E B : y 2 = x 3 + k B 2 containing an integral point, where B ranges over positive integers less than N , is bounded by ≪ k N ( log N ) - 1 2 + ϵ . In particular, this implies that the number of positive integers B ≤ N such that - 3...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-01, Vol.388 (3), p.2275-2288 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fix a non-square integer
k
≠
0
. We show that the number of curves
E
B
:
y
2
=
x
3
+
k
B
2
containing an integral point, where
B
ranges over positive integers less than
N
, is bounded by
≪
k
N
(
log
N
)
-
1
2
+
ϵ
. In particular, this implies that the number of positive integers
B
≤
N
such that
-
3
k
B
2
is the discriminant of an elliptic curve over
Q
is
o
(
N
). The proof involves a discriminant-lowering procedure on integral binary cubic forms. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-023-02578-x |