Integral points on cubic twists of Mordell curves

Fix a non-square integer k ≠ 0 . We show that the number of curves E B : y 2 = x 3 + k B 2 containing an integral point, where B ranges over positive integers less than N , is bounded by ≪ k N ( log N ) - 1 2 + ϵ . In particular, this implies that the number of positive integers B ≤ N such that - 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-01, Vol.388 (3), p.2275-2288
1. Verfasser: Chan, Stephanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fix a non-square integer k ≠ 0 . We show that the number of curves E B : y 2 = x 3 + k B 2 containing an integral point, where B ranges over positive integers less than N , is bounded by ≪ k N ( log N ) - 1 2 + ϵ . In particular, this implies that the number of positive integers B ≤ N such that - 3 k B 2 is the discriminant of an elliptic curve over Q is o ( N ). The proof involves a discriminant-lowering procedure on integral binary cubic forms.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-023-02578-x