On the Grad–Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations
In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines t...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-01, Vol.388 (3), p.2387-2472 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2472 |
---|---|
container_issue | 3 |
container_start_page | 2387 |
container_title | Mathematische annalen |
container_volume | 388 |
creator | Alonso-Orán, Diego Velázquez, Juan J. L. |
description | In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines the so-called current transport method together with Hölder estimates for a class of non-convolution singular integral operators. The same method allows to solve an analogous boundary value problem for the steady incompressible Euler equations. |
doi_str_mv | 10.1007/s00208-023-02582-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926602836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926602836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-b810ca70178375de848eae9a0a8f505ca1e1ad87d8b2617b7f026a7c3cf2ff413</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Ap4Dn6Euyu0mPUrQKhYLoOWZ3k3bLNmmTXcWb_-Af-iWmXcGbh8c8eDPDvEHoksI1BRA3EYCBJMB4mlwyQo_QiGY8LRLEMRqle05yyekpOotxDQAcIB-h14XD3crgWdD19-fXU182Dpe-d7UOH_hNt73B2-DL1myw9eHA7d49qZuNcbHxTrd4o5fOdJ6sPurgY6e7psJm1yf0Lp6jE6vbaC5-cYxe7u-epw9kvpg9Tm_npOI060gpKVRaABWSi7w2MpNGm4kGLW0OeaWpobqWopYlK6gohQVWaFHxyjJrM8rH6GrwTWl3vYmdWvs-pHhRsQkrCmCSF4nFBlaVksZgrNqGZpNeVRTUvkk1NKlSk-rQpNpb80EUE9ktTfiz_kf1A2FbeH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926602836</pqid></control><display><type>article</type><title>On the Grad–Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations</title><source>SpringerLink Journals</source><creator>Alonso-Orán, Diego ; Velázquez, Juan J. L.</creator><creatorcontrib>Alonso-Orán, Diego ; Velázquez, Juan J. L.</creatorcontrib><description>In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines the so-called current transport method together with Hölder estimates for a class of non-convolution singular integral operators. The same method allows to solve an analogous boundary value problem for the steady incompressible Euler equations.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-023-02582-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary value problems ; Euler-Lagrange equation ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nuclear energy</subject><ispartof>Mathematische annalen, 2024-01, Vol.388 (3), p.2387-2472</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-b810ca70178375de848eae9a0a8f505ca1e1ad87d8b2617b7f026a7c3cf2ff413</cites><orcidid>0000-0003-0809-856X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-023-02582-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-023-02582-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alonso-Orán, Diego</creatorcontrib><creatorcontrib>Velázquez, Juan J. L.</creatorcontrib><title>On the Grad–Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines the so-called current transport method together with Hölder estimates for a class of non-convolution singular integral operators. The same method allows to solve an analogous boundary value problem for the steady incompressible Euler equations.</description><subject>Boundary value problems</subject><subject>Euler-Lagrange equation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear energy</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMFKAzEUDKJgrf6Ap4Dn6Euyu0mPUrQKhYLoOWZ3k3bLNmmTXcWb_-Af-iWmXcGbh8c8eDPDvEHoksI1BRA3EYCBJMB4mlwyQo_QiGY8LRLEMRqle05yyekpOotxDQAcIB-h14XD3crgWdD19-fXU182Dpe-d7UOH_hNt73B2-DL1myw9eHA7d49qZuNcbHxTrd4o5fOdJ6sPurgY6e7psJm1yf0Lp6jE6vbaC5-cYxe7u-epw9kvpg9Tm_npOI060gpKVRaABWSi7w2MpNGm4kGLW0OeaWpobqWopYlK6gohQVWaFHxyjJrM8rH6GrwTWl3vYmdWvs-pHhRsQkrCmCSF4nFBlaVksZgrNqGZpNeVRTUvkk1NKlSk-rQpNpb80EUE9ktTfiz_kf1A2FbeH0</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Alonso-Orán, Diego</creator><creator>Velázquez, Juan J. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0809-856X</orcidid></search><sort><creationdate>20240101</creationdate><title>On the Grad–Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations</title><author>Alonso-Orán, Diego ; Velázquez, Juan J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-b810ca70178375de848eae9a0a8f505ca1e1ad87d8b2617b7f026a7c3cf2ff413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Euler-Lagrange equation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Orán, Diego</creatorcontrib><creatorcontrib>Velázquez, Juan J. L.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Orán, Diego</au><au>Velázquez, Juan J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Grad–Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>388</volume><issue>3</issue><spage>2387</spage><epage>2472</epage><pages>2387-2472</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines the so-called current transport method together with Hölder estimates for a class of non-convolution singular integral operators. The same method allows to solve an analogous boundary value problem for the steady incompressible Euler equations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-023-02582-1</doi><tpages>86</tpages><orcidid>https://orcid.org/0000-0003-0809-856X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2024-01, Vol.388 (3), p.2387-2472 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2926602836 |
source | SpringerLink Journals |
subjects | Boundary value problems Euler-Lagrange equation Mathematical analysis Mathematics Mathematics and Statistics Nuclear energy |
title | On the Grad–Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Grad%E2%80%93Rubin%20boundary%20value%20problem%20for%20the%20two-dimensional%20magneto-hydrostatic%20equations&rft.jtitle=Mathematische%20annalen&rft.au=Alonso-Or%C3%A1n,%20Diego&rft.date=2024-01-01&rft.volume=388&rft.issue=3&rft.spage=2387&rft.epage=2472&rft.pages=2387-2472&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-023-02582-1&rft_dat=%3Cproquest_cross%3E2926602836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926602836&rft_id=info:pmid/&rfr_iscdi=true |