On the Grad–Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations

In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-01, Vol.388 (3), p.2387-2472
Hauptverfasser: Alonso-Orán, Diego, Velázquez, Juan J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines the so-called current transport method together with Hölder estimates for a class of non-convolution singular integral operators. The same method allows to solve an analogous boundary value problem for the steady incompressible Euler equations.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-023-02582-1