On the Grad–Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations
In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines t...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-01, Vol.388 (3), p.2387-2472 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The proof relies on a fixed point argument which combines the so-called current transport method together with Hölder estimates for a class of non-convolution singular integral operators. The same method allows to solve an analogous boundary value problem for the steady incompressible Euler equations. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-023-02582-1 |