Adaptive K-Repetition Transmission with Site Diversity Reception for Energy-Efficient Grant-Free URLLC in 5G NR

The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Communications 2024/01/01, Vol.E107.B(1), pp.74-84
Hauptverfasser: DATAESATU, Arif, SANADA, Kosuke, HATANO, Hiroyuki, MORI, Kazuo, BOONSRIMUANG, Pisit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.
ISSN:0916-8516
1745-1345
DOI:10.1587/transcom.2023WWP0006