Crystallization Enhancement and Ionic Defect Passivation in Wide‐Bandgap Perovskite for Efficient and Stable All‐Perovskite Tandem Solar Cells

By integrating wide‐bandgap (WBG) and narrow‐bandgap perovskites, monolithic all‐perovskite tandem solar cells have garnered significant attention as a prospective strategy for surpassing the efficiency limits of single‐junction cells. However, the WBG subcells, which significantly impact the perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-02, Vol.34 (7), p.n/a
Hauptverfasser: Qiao, Liang, Ye, Tianshi, Wang, Pengshuai, Wang, Tao, Zhang, Lin, Sun, Ruitian, Kong, Weiyu, Yang, Xudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Advanced functional materials
container_volume 34
creator Qiao, Liang
Ye, Tianshi
Wang, Pengshuai
Wang, Tao
Zhang, Lin
Sun, Ruitian
Kong, Weiyu
Yang, Xudong
description By integrating wide‐bandgap (WBG) and narrow‐bandgap perovskites, monolithic all‐perovskite tandem solar cells have garnered significant attention as a prospective strategy for surpassing the efficiency limits of single‐junction cells. However, the WBG subcells, which significantly impact the performance and operational stability of all‐perovskite tandem solar cells, face notable challenges associated with pronounced nonradiative recombination losses and limited film photostability. Here, an efficient method is reported by adding potassium hypophosphite into the perovskite precursor solution to simultaneously regulate crystallization and passivate ionic defects in WBG perovskites. This approach results in high‐quality perovskite films and significantly improves the performance and photostability of WBG perovskite solar cells. The single‐junction devices with a 1.79 eV bandgap achieve a champion power conversion efficiency (PCE) of 20.06% with an open‐circuit voltage of 1.32 V. The devices retain ≈96% of their initial PCE following 913 h of continuous AM 1.5 G illumination. With these WBG perovskite subcells, monolithic all‐perovskite tandem solar cells are fabricated with an efficiency of 26.08%. The addition of potassium hypophosphite into perovskite precursor solution regulates crystallization and passivates ionic defects in wide‐bandgap (WBG) perovskites. Single‐junction WBG devices with a high efficiency of 20.06% retain ≈96% of their initial efficiency after 913 h of continuous AM1.5 G illumination. Meanwhile, monolithic all‐perovskite tandem solar cells achieve an efficiency of 26.08%.
doi_str_mv 10.1002/adfm.202308908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926343165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926343165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-a07ea6e063967db5b43cbe2171fd4c95bd0298d9b7a7720b32a552f3e57f79f93</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhoMoWKtb1wOuU-eSZDLL2osWKhZa0V2YJGd06jSpM2mlrnwE8RF9ElOi1Z2rc-B833_g97xTgjsEY3ouc7XoUEwZjgWO97wWiUjkM0zj_d1O7g-9I-fmGBPOWdDyPnp24yppjH6VlS4LNCgeZZHBAooKySJHo7LQGeqDgqxCE-mcXjegLtCdzuHz7f2i5h7kEk3Almv3pCtAqrRooJTO9E_OtJKpAdQ1pjb-kLP6CAs0LY20qAfGuGPvQEnj4OR7tr3b4WDWu_LHN5ejXnfsZyzksS8xBxkBjpiIeJ6GacCyFCjhROVBJsI0x1TEuUi55JzilFEZhlQxCLniQgnW9s6a3KUtn1fgqmRermxRv0yooBELGInCmuo0VGZL5yyoZGn1QtpNQnCy7T3Z9p7seq8F0Qgv2sDmHzrp9ofXv-4XxESLEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926343165</pqid></control><display><type>article</type><title>Crystallization Enhancement and Ionic Defect Passivation in Wide‐Bandgap Perovskite for Efficient and Stable All‐Perovskite Tandem Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qiao, Liang ; Ye, Tianshi ; Wang, Pengshuai ; Wang, Tao ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Yang, Xudong</creator><creatorcontrib>Qiao, Liang ; Ye, Tianshi ; Wang, Pengshuai ; Wang, Tao ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Yang, Xudong</creatorcontrib><description>By integrating wide‐bandgap (WBG) and narrow‐bandgap perovskites, monolithic all‐perovskite tandem solar cells have garnered significant attention as a prospective strategy for surpassing the efficiency limits of single‐junction cells. However, the WBG subcells, which significantly impact the performance and operational stability of all‐perovskite tandem solar cells, face notable challenges associated with pronounced nonradiative recombination losses and limited film photostability. Here, an efficient method is reported by adding potassium hypophosphite into the perovskite precursor solution to simultaneously regulate crystallization and passivate ionic defects in WBG perovskites. This approach results in high‐quality perovskite films and significantly improves the performance and photostability of WBG perovskite solar cells. The single‐junction devices with a 1.79 eV bandgap achieve a champion power conversion efficiency (PCE) of 20.06% with an open‐circuit voltage of 1.32 V. The devices retain ≈96% of their initial PCE following 913 h of continuous AM 1.5 G illumination. With these WBG perovskite subcells, monolithic all‐perovskite tandem solar cells are fabricated with an efficiency of 26.08%. The addition of potassium hypophosphite into perovskite precursor solution regulates crystallization and passivates ionic defects in wide‐bandgap (WBG) perovskites. Single‐junction WBG devices with a high efficiency of 20.06% retain ≈96% of their initial efficiency after 913 h of continuous AM1.5 G illumination. Meanwhile, monolithic all‐perovskite tandem solar cells achieve an efficiency of 26.08%.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202308908</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐perovskite tandem solar cells ; Crystal defects ; Crystallization ; Efficiency ; Energy conversion efficiency ; Energy gap ; passivation ; Performance enhancement ; Perovskites ; Photovoltaic cells ; Solar cells ; stability ; wide‐bandgap perovskites</subject><ispartof>Advanced functional materials, 2024-02, Vol.34 (7), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-a07ea6e063967db5b43cbe2171fd4c95bd0298d9b7a7720b32a552f3e57f79f93</citedby><cites>FETCH-LOGICAL-c3578-a07ea6e063967db5b43cbe2171fd4c95bd0298d9b7a7720b32a552f3e57f79f93</cites><orcidid>0009-0003-4259-1742 ; 0000-0002-3877-7830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202308908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202308908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Ye, Tianshi</creatorcontrib><creatorcontrib>Wang, Pengshuai</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Sun, Ruitian</creatorcontrib><creatorcontrib>Kong, Weiyu</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><title>Crystallization Enhancement and Ionic Defect Passivation in Wide‐Bandgap Perovskite for Efficient and Stable All‐Perovskite Tandem Solar Cells</title><title>Advanced functional materials</title><description>By integrating wide‐bandgap (WBG) and narrow‐bandgap perovskites, monolithic all‐perovskite tandem solar cells have garnered significant attention as a prospective strategy for surpassing the efficiency limits of single‐junction cells. However, the WBG subcells, which significantly impact the performance and operational stability of all‐perovskite tandem solar cells, face notable challenges associated with pronounced nonradiative recombination losses and limited film photostability. Here, an efficient method is reported by adding potassium hypophosphite into the perovskite precursor solution to simultaneously regulate crystallization and passivate ionic defects in WBG perovskites. This approach results in high‐quality perovskite films and significantly improves the performance and photostability of WBG perovskite solar cells. The single‐junction devices with a 1.79 eV bandgap achieve a champion power conversion efficiency (PCE) of 20.06% with an open‐circuit voltage of 1.32 V. The devices retain ≈96% of their initial PCE following 913 h of continuous AM 1.5 G illumination. With these WBG perovskite subcells, monolithic all‐perovskite tandem solar cells are fabricated with an efficiency of 26.08%. The addition of potassium hypophosphite into perovskite precursor solution regulates crystallization and passivates ionic defects in wide‐bandgap (WBG) perovskites. Single‐junction WBG devices with a high efficiency of 20.06% retain ≈96% of their initial efficiency after 913 h of continuous AM1.5 G illumination. Meanwhile, monolithic all‐perovskite tandem solar cells achieve an efficiency of 26.08%.</description><subject>all‐perovskite tandem solar cells</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>passivation</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>stability</subject><subject>wide‐bandgap perovskites</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhoMoWKtb1wOuU-eSZDLL2osWKhZa0V2YJGd06jSpM2mlrnwE8RF9ElOi1Z2rc-B833_g97xTgjsEY3ouc7XoUEwZjgWO97wWiUjkM0zj_d1O7g-9I-fmGBPOWdDyPnp24yppjH6VlS4LNCgeZZHBAooKySJHo7LQGeqDgqxCE-mcXjegLtCdzuHz7f2i5h7kEk3Almv3pCtAqrRooJTO9E_OtJKpAdQ1pjb-kLP6CAs0LY20qAfGuGPvQEnj4OR7tr3b4WDWu_LHN5ejXnfsZyzksS8xBxkBjpiIeJ6GacCyFCjhROVBJsI0x1TEuUi55JzilFEZhlQxCLniQgnW9s6a3KUtn1fgqmRermxRv0yooBELGInCmuo0VGZL5yyoZGn1QtpNQnCy7T3Z9p7seq8F0Qgv2sDmHzrp9ofXv-4XxESLEA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Qiao, Liang</creator><creator>Ye, Tianshi</creator><creator>Wang, Pengshuai</creator><creator>Wang, Tao</creator><creator>Zhang, Lin</creator><creator>Sun, Ruitian</creator><creator>Kong, Weiyu</creator><creator>Yang, Xudong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-4259-1742</orcidid><orcidid>https://orcid.org/0000-0002-3877-7830</orcidid></search><sort><creationdate>20240201</creationdate><title>Crystallization Enhancement and Ionic Defect Passivation in Wide‐Bandgap Perovskite for Efficient and Stable All‐Perovskite Tandem Solar Cells</title><author>Qiao, Liang ; Ye, Tianshi ; Wang, Pengshuai ; Wang, Tao ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Yang, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-a07ea6e063967db5b43cbe2171fd4c95bd0298d9b7a7720b32a552f3e57f79f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>all‐perovskite tandem solar cells</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>passivation</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>stability</topic><topic>wide‐bandgap perovskites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Ye, Tianshi</creatorcontrib><creatorcontrib>Wang, Pengshuai</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Sun, Ruitian</creatorcontrib><creatorcontrib>Kong, Weiyu</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Liang</au><au>Ye, Tianshi</au><au>Wang, Pengshuai</au><au>Wang, Tao</au><au>Zhang, Lin</au><au>Sun, Ruitian</au><au>Kong, Weiyu</au><au>Yang, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization Enhancement and Ionic Defect Passivation in Wide‐Bandgap Perovskite for Efficient and Stable All‐Perovskite Tandem Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>34</volume><issue>7</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>By integrating wide‐bandgap (WBG) and narrow‐bandgap perovskites, monolithic all‐perovskite tandem solar cells have garnered significant attention as a prospective strategy for surpassing the efficiency limits of single‐junction cells. However, the WBG subcells, which significantly impact the performance and operational stability of all‐perovskite tandem solar cells, face notable challenges associated with pronounced nonradiative recombination losses and limited film photostability. Here, an efficient method is reported by adding potassium hypophosphite into the perovskite precursor solution to simultaneously regulate crystallization and passivate ionic defects in WBG perovskites. This approach results in high‐quality perovskite films and significantly improves the performance and photostability of WBG perovskite solar cells. The single‐junction devices with a 1.79 eV bandgap achieve a champion power conversion efficiency (PCE) of 20.06% with an open‐circuit voltage of 1.32 V. The devices retain ≈96% of their initial PCE following 913 h of continuous AM 1.5 G illumination. With these WBG perovskite subcells, monolithic all‐perovskite tandem solar cells are fabricated with an efficiency of 26.08%. The addition of potassium hypophosphite into perovskite precursor solution regulates crystallization and passivates ionic defects in wide‐bandgap (WBG) perovskites. Single‐junction WBG devices with a high efficiency of 20.06% retain ≈96% of their initial efficiency after 913 h of continuous AM1.5 G illumination. Meanwhile, monolithic all‐perovskite tandem solar cells achieve an efficiency of 26.08%.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202308908</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0003-4259-1742</orcidid><orcidid>https://orcid.org/0000-0002-3877-7830</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-02, Vol.34 (7), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2926343165
source Wiley Online Library Journals Frontfile Complete
subjects all‐perovskite tandem solar cells
Crystal defects
Crystallization
Efficiency
Energy conversion efficiency
Energy gap
passivation
Performance enhancement
Perovskites
Photovoltaic cells
Solar cells
stability
wide‐bandgap perovskites
title Crystallization Enhancement and Ionic Defect Passivation in Wide‐Bandgap Perovskite for Efficient and Stable All‐Perovskite Tandem Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20Enhancement%20and%20Ionic%20Defect%20Passivation%20in%20Wide%E2%80%90Bandgap%20Perovskite%20for%20Efficient%20and%20Stable%20All%E2%80%90Perovskite%20Tandem%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Qiao,%20Liang&rft.date=2024-02-01&rft.volume=34&rft.issue=7&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202308908&rft_dat=%3Cproquest_cross%3E2926343165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926343165&rft_id=info:pmid/&rfr_iscdi=true