Crystallization Enhancement and Ionic Defect Passivation in Wide‐Bandgap Perovskite for Efficient and Stable All‐Perovskite Tandem Solar Cells
By integrating wide‐bandgap (WBG) and narrow‐bandgap perovskites, monolithic all‐perovskite tandem solar cells have garnered significant attention as a prospective strategy for surpassing the efficiency limits of single‐junction cells. However, the WBG subcells, which significantly impact the perfor...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-02, Vol.34 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By integrating wide‐bandgap (WBG) and narrow‐bandgap perovskites, monolithic all‐perovskite tandem solar cells have garnered significant attention as a prospective strategy for surpassing the efficiency limits of single‐junction cells. However, the WBG subcells, which significantly impact the performance and operational stability of all‐perovskite tandem solar cells, face notable challenges associated with pronounced nonradiative recombination losses and limited film photostability. Here, an efficient method is reported by adding potassium hypophosphite into the perovskite precursor solution to simultaneously regulate crystallization and passivate ionic defects in WBG perovskites. This approach results in high‐quality perovskite films and significantly improves the performance and photostability of WBG perovskite solar cells. The single‐junction devices with a 1.79 eV bandgap achieve a champion power conversion efficiency (PCE) of 20.06% with an open‐circuit voltage of 1.32 V. The devices retain ≈96% of their initial PCE following 913 h of continuous AM 1.5 G illumination. With these WBG perovskite subcells, monolithic all‐perovskite tandem solar cells are fabricated with an efficiency of 26.08%.
The addition of potassium hypophosphite into perovskite precursor solution regulates crystallization and passivates ionic defects in wide‐bandgap (WBG) perovskites. Single‐junction WBG devices with a high efficiency of 20.06% retain ≈96% of their initial efficiency after 913 h of continuous AM1.5 G illumination. Meanwhile, monolithic all‐perovskite tandem solar cells achieve an efficiency of 26.08%. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202308908 |