Noncommutative Poisson structure and invariants of matrices

We introduce a novel approach that employs techniques from noncommutative Poisson geometry to comprehend the algebra of invariants of two \(n\times n\) matrices. We entirely solve the open problem of computing the algebra of invariants of two \(4 \times 4\) matrices. As an application, we derive the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Eshmatov, Farkhod, García-Martínez, Xabier, Turdibaev, Rustam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a novel approach that employs techniques from noncommutative Poisson geometry to comprehend the algebra of invariants of two \(n\times n\) matrices. We entirely solve the open problem of computing the algebra of invariants of two \(4 \times 4\) matrices. As an application, we derive the complete description of the invariant commuting variety of \(4 \times 4\) matrices and the fourth Calogero-Moser space.
ISSN:2331-8422