VDMNav: Software Architecture for Aerodynamically Constrained Navigation on Small Fixed-Wing Drones

Navigation of drones is predominantly based on sensor fusion algorithms. Most of these algorithms make use of some form of Bayesian filtering with a majority employing an Extended Kalman Filter (EKF), wherein inertial measurements are fused with a Global Navigation Satellite System (GNSS), and other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-03, Vol.9 (3), p.2869-2876
Hauptverfasser: Laupre, Gabriel Francois, Sharma, Aman, Skaloud, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Navigation of drones is predominantly based on sensor fusion algorithms. Most of these algorithms make use of some form of Bayesian filtering with a majority employing an Extended Kalman Filter (EKF), wherein inertial measurements are fused with a Global Navigation Satellite System (GNSS), and other sensors, in a kinematic framework to yield a navigation solution (position, velocity, attitude, and time). However, the long-term accuracy of this solution is exacerbated during the absence of satellite positioning, especially for small drones with low-cost MEMS inertial sensors. On the other hand, a recently proposed vehicle dynamic model (VDM)-based navigation system has shown significant improvement in positioning accuracy during the absence of a satellite positioning solution, although in a mostly offline setting. In this article, we present the software architecture of its real-time implementation using Robot Operating System (ROS) that separates and interfaces its core from a particular hardware. The presented implementation asynchronously handles different sensor data in a modular fashion and allows i) adapting the underlying aerodynamic model, ii) including complementary sensors, and iii) reducing the dimensionality of the EKF state space at run-time without compromising the navigation performance. The real-time performance of the proposed software architecture is evaluated during long GNSS absences of up to eight minutes and compared to that of inertial coasting.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2024.3358758