Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control

This article focuses on dynamic event-triggered mechanism (DETM)-based model predictive control (MPC) for T-S fuzzy systems. A hybrid dynamic variables-dependent DETM is carefully devised, which includes a multiplicative dynamic variable and an additive dynamic variable. The addressed DETM-based fuz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2024-03, Vol.11 (3), p.723-733
Hauptverfasser: Wan, Xiongbo, Zhang, Chaoling, Wei, Fan, Zhang, Chuan-Ke, Wu, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article focuses on dynamic event-triggered mechanism (DETM)-based model predictive control (MPC) for T-S fuzzy systems. A hybrid dynamic variables-dependent DETM is carefully devised, which includes a multiplicative dynamic variable and an additive dynamic variable. The addressed DETM-based fuzzy MPC issue is described as a "min-max" optimization problem (OP). To facilitate the co-design of the MPC controller and the weighting matrix of the DETM, an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant (RPI) set that contain the membership functions and the hybrid dynamic variables. A dynamic event-triggered fuzzy MPC algorithm is developed accordingly, whose recursive feasibility is analysed by employing the RPI set. With the designed controller, the involved fuzzy system is ensured to be asymptotically stable. Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2023.123957