Best practices for addressing missing data through multiple imputation

A common challenge in developmental research is the amount of incomplete and missing data that occurs from respondents failing to complete tasks or questionnaires, as well as from disengaging from the study (i.e., attrition). This missingness can lead to biases in parameter estimates and, hence, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infant and child development 2024-01, Vol.33 (1), p.n/a
Hauptverfasser: Woods, Adrienne D., Gerasimova, Daria, Van Dusen, Ben, Nissen, Jayson, Bainter, Sierra, Uzdavines, Alex, Davis‐Kean, Pamela E., Halvorson, Max, King, Kevin M., Logan, Jessica A. R., Xu, Menglin, Vasilev, Martin R., Clay, James M., Moreau, David, Joyal‐Desmarais, Keven, Cruz, Rick A., Brown, Denver M. Y., Schmidt, Kathleen, Elsherif, Mahmoud M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A common challenge in developmental research is the amount of incomplete and missing data that occurs from respondents failing to complete tasks or questionnaires, as well as from disengaging from the study (i.e., attrition). This missingness can lead to biases in parameter estimates and, hence, in the interpretation of findings. These biases can be addressed through statistical techniques that adjust for missing data, such as multiple imputation. Although multiple imputation is highly effective, it has not been widely adopted by developmental scientists given barriers such as lack of training or misconceptions about imputation methods. Utilizing default methods within statistical software programs like listwise deletion is common but may introduce additional bias. This manuscript is intended to provide practical guidelines for developmental researchers to follow when examining their data for missingness, making decisions about how to handle that missingness and reporting the extent of missing data biases and specific multiple imputation procedures in publications.
ISSN:1522-7227
1522-7219
DOI:10.1002/icd.2407