Torsion and Lorentz symmetry from Twisted Spectral Triples
By twisting the spectral triple of a riemannian spin manifold, we show how to generate an orthogonal and geodesic preserving torsion from a torsionless Dirac operator. We identify the group of twisted unitaries as the generator of torsion with co-exact three form. Through the fermionic action, the t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By twisting the spectral triple of a riemannian spin manifold, we show how to generate an orthogonal and geodesic preserving torsion from a torsionless Dirac operator. We identify the group of twisted unitaries as the generator of torsion with co-exact three form. Through the fermionic action, the torsion term identifies with a Lorentzian energy-momentum 4-vector. The Lorentz group turns out to be a normal subgroup of the twisted unitaries. We also investigate the spectral action related to this model. |
---|---|
ISSN: | 2331-8422 |