Torsion and Lorentz symmetry from Twisted Spectral Triples

By twisting the spectral triple of a riemannian spin manifold, we show how to generate an orthogonal and geodesic preserving torsion from a torsionless Dirac operator. We identify the group of twisted unitaries as the generator of torsion with co-exact three form. Through the fermionic action, the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Martinetti, Pierre, Gaston Nieuviarts, Zeitoun, Ruben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By twisting the spectral triple of a riemannian spin manifold, we show how to generate an orthogonal and geodesic preserving torsion from a torsionless Dirac operator. We identify the group of twisted unitaries as the generator of torsion with co-exact three form. Through the fermionic action, the torsion term identifies with a Lorentzian energy-momentum 4-vector. The Lorentz group turns out to be a normal subgroup of the twisted unitaries. We also investigate the spectral action related to this model.
ISSN:2331-8422